CS 2150 Final Exam, Spring 2018 Page 1 of 10 UVa userid:

CS 2150 Final Exam

Name

You MUST write your e-mail ID on EACH page and put your name on the top of this page, too.

If you are still writing when “pens down” is called, your exam will be ripped up and not graded — sorry to have to
be strict on this!

There are 10 pages to this exam. Once the exam starts, please make sure you have all the pages. Questions are
worth different amounts of points.

Answers for the short-answer questions should not exceed about 20 words; if your answer is too long (say, more
than 30 words), you will get a zero for that question!

This exam is CLOSED text book, closed-notes, closed-calculator, closed-cell phone, closed-computer, closed-neighbor,
etc. Questions are worth different amounts, so be sure to look over all the questions and plan your time accordingly.
Please sign the honor pledge below.

The Tuo that is seen
Is not the true Tao,
until You bring fresh toner.

CS 2150 Final Exam, Spring 2018 Page 2 of 10 UVa userid:

Page 2: Numbers

1. [3 points] Convert the following 8-bit two’s-complement number into decimal: 11110000,

2. [3 points] Convert the following decimal number into 8-bit two’s-complement binary: —5

3. [3 points] Consider an IEEE 754-like floating point notation that uses 1 sign bit, 4 exponent bits, and 5 mantissa
bits. Encode 4.5 in this notation.

4. [3 points] Consider the same notation from the previous question. What is the smallest positive non-zero value
that can be represented? You may leave this as a base-10 expression.

CS 2150 Final Exam, Spring 2018 Page 3 of 10 UVa userid:

Page 3: True / False

5. [20 points] For each proposition below, circle true if it is always true, and false otherwise.

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

Amortized runtime is the same as expected runtime

The following x86 instruction is valid: mov [rax], [4*rbx]

The following x86 instruction is valid: mov rax, [2*rsi+rdx+4]

Big-Oh always refers to the worst case runtime

Topological sort can be used to detect a cycle in a graph

Dijkstra’s algorithm can be used on a graph with edges of equal weight

A high load factor usually speeds up operations by minimizing collisions in a hash table,
but is a less efficient use of memory

x86-64 assembly considers references and pointers to be the same
All valid ¢ programs are also valid c++ programs
RBX is the traditional return register for the callee

When printing out an expression tree in prefix order, parentheses are not necessary to in-
dicate order of operations

AVL Trees, Red-Black Trees, and Heaps are all just particular types of binary search trees

Dynamic dispatch determines which member function to call using the compile-time type
of the object

In replicated (non-virtual) multiple inheritance, two parent classes share the same instance
of a class as a parent

A C-style string is a pointer to a char
Stacks and queues are abstract data types

5 bits are necessary to uniquely represent all 26 of the lowercase letters of the english al-
phabet

The runtime for insertion into a linked list is in the set O(n?)
Variables of type int** stores twice as many bits as one of type int*

When a recursive function calls itself recursively too many times, this will result in a stack
overflow.

CS 2150 Final Exam, Spring 2018 Page 4 of 10 UVa userid:
Page 4: IBCM / Assembly

6. [4 points] Here’s a cool, recursive C++ function with a partial translation to x86 code. Fill in the missing
instructions—you can assume that you have access to the “product” function you wrote in pre-lab 8.

f:
int f(int x) { push rbx
if (x <= 1) {
return 1;
}oelse {
return 2xf(x—1) + f(x—-2); cnp rdi, 1
} jle done
} dec rdi
call f

call product
mov rbx, rax

pop rdi

call f

add rax, rbx
done

pop rbx

ret

7. [6 points] Here’s another cool, recursive C++ function. Implement the function in x86. You may not use more
13 lines of code for this (It can be done in as few as 9 lines, including labels)

int multiply3(int n) {
if (n==1) {
return 3;
} else {
return multiply3 (n—-1) + 3;
}

}

CS 2150 Final Exam, Spring 2018 Page 5 of 10 UVa userid:

Page 5: AVL Trees

8. [6 points] Draw the resultant balanced AVL tree after inserting the term misty. Note that for this question, any
capital letter sorts before any lowercase letter, hence Zany to the left of cobwebs.

cobwebs

orange

landscape

9. [4 points] What is the minimum and maximum number of nodes in an AVL tree of height 5? (assume the
height of a tree with a single node is 0).

10. [4 points] Given AVL tree’s balance method, fill in the parameters to the rotation calls. The rotateLeft and
rotateRight methods expect a pointer to the AVLNode to be rotated.

void AVLTree:: balance (AVLNode #*&n) {
//NOIE: balanceFactor returns height of right — height of left
if (balanceFactor(n) < —-1) {
if (balanceFactor(n—>left) > 0) {

rotateLeft (____________________);

}

rotateRight (- _________________);
} else if (balanceFactor(n) > 1) {
if (balanceFactor(n—>right) < 0) {

rotateRight (- ___________________);
}

rotateLeft (____________________);

}
}

CS 2150 Final Exam, Spring 2018 Page 6 of 10 UVa userid:
Page 6: Hash Tables

11. [5 points] Insert the following items (here the key and the value for this hash table are the same, so we won’t
list both seperately) into the hash table below: 3,7,2,1,9

Note that the table size is 5 (with array indices 0-4). The hash function is h(x) = x * 5 4+ 3 and you should
resolve collisions using linear probing.

index value

12. [5 points] Do the exact same thing as in the previous question, except this time resolve collisions using double
hashing. Your second hash function is hs(z) = %10

index value

13. [3 points] Explain in one sentence why h(x) = = * 5 + 3 is a poor choice for a hash function. In one more
sentence, explain why hy(z) = %10 is a poor choice for a secondary hashing function.

CS 2150 Final Exam, Spring 2018 Page 7 of 10 UVa userid:

Page 7: Heaps are awesome

14. [4 points] For each of the following priority queue operations, circle whichever of binary min-heaps or AVL trees
are asymptotically faster, or circle “same” if neither is faster:

insert() binary min-heap AVL tree same
findMin() binary min-heap AVL tree same

deleteMin() | binary min-heap AVL tree same

deleteMax() | binary min-heap AVL tree same

15. [3 points] A typical binary heap implementation is more space efficient than an AVL tree. Circle all that apply:

The amount of space saved is:
a) proportional to the number of items stored
b) proportional to nlogn where n is the number of items stored
c) approximately constant, no matter the number of items
d) usually dependent on the size of each items stored

e) usually dependent on the size of pointers

16. [3 points] Given the string “aabbbbcdddeeeee”:

Create and draw a correct Huffman tree. What is the encoding for each character?

CS 2150 Final Exam, Spring 2018 Page 8 of 10 UVa userid:
Page 8: Skip Lists

Skip Lists are a data structure that allow for fast search in an ordered sequence of elements. Skip Lists are the
primary indexing structure for many databases and are also often used for parallel applications.

A Skip List is a hierarchy of probabilistically generated linked-lists where the lowest list is the full original list
and the highest list is the sparsest. Some randomly chosen nodes in the lower lists are copied and replicated in an

upper list, but not all of them.

For example, a Skip List filled with sorted integers might look like:

o > o >
—> . > o >

B 31 B
— 2 |o > o> S — o>

*—> o> |0 -‘—» o> |6 (o> o> 7| |o> o>

In the image above, the left-most node is the dummy head node and the right-most the dummy tail node. Note
that each node contains multiple next pointers.

One way to generate a Skip-List is by starting with a sorted linked-list and then: proceeding from the first node
to the last, roll a die and replicate that node in the upper list with 50 percent probability. Then, repeat that process

on the newly created list; until there are only 1 or 2 items in the upper-most list.

On the next page, you will answer a few questions about Skip Lists.

CS 2150 Final Exam, Spring 2018 Page 9 of 10 UVa userid:

Page 9: Questions about Skip Lists

17. [6 points] Write a function in c++ that performs find() on a Skip List of integers. Your method will take in
the value to search for (int x) and the node you are currently searching (ListNode* curNode). Notice that
this second parameter is available in case you’d like to implement your method recursively, but feel free to
implement this recursively or iteratively. Your expected runtime must be strictly better than searching a regular
linked-list.

class ListNode{ class SkipList {
public: public:
//value stored (e.g., 31) /* some methods omitted x/
int value; bool find (int x) {return find(x, head);}
bool find(int x, ListNode *curNode);

//list of mnext pointers. private:
//Node at index 0 at same level this ListNode xhead;
//Node at index 1 at lower level , etc. ListNode =xtail;
vector<ListNodex> nextNodes; }s

¥

//Returns true iff x is in this skip list. TODO: IMPLEMENT THIS MEIHOD
//this method initially called with dummy head as param
bool SkipList::find(int x, ListNodex curNode) {

18. [3 points] What is the worst-case Big-Theta time complexity of the find() function in terms of n where n is the
number of elements in the lowest list? What is the expected Big-Theta time complexity of find()?

CS 2150 Final Exam, Spring 2018 Page 10 of 10 UVa userid:

Page 10: Graphs
Consider the following weighted, undirected graph:

19. [3 points] What edges of the above graph would be included in a minimum spanning tree?

20. [3 points] When performing Dijkstra’s algorithm starting with vertex F', how many times will the distance to
vertex A be updated? For each of these updates, to what value will it be updated and due to what edge?

21. [3 points] Draw an example of a three-node, undirected, weighted graph which has exactly two distinct mini-
mum spanning trees.

