CS 2150 Exam 2, spring 2013 Page 1 of 6 UVa userid:

CS 2150 Exam 2

Name

You MUST write your e-mail ID on EACH page and bubble in your userid at the bottom of this
tirst page. And put your name on the top of this page, too.

If you are still writing when “pens down” is called, your exam will be ripped up and not
graded — even if you are still writing to fill in the bubble form. So please do that first. Sorry
to have to be strict on this!

Other than bubbling in your userid at the bottom of this page, please do not write in the footer
section of this page.

There are 6 pages to this exam. Once the exam starts, please make sure you have all the pages.
Questions are worth different amounts of points.

If you do not bubble in this first page properly, you will not receive credit for the exam!

This exam is CLOSED text book, closed-notes, closed-calculator, closed-cell phone, closed-com-
puter, closed-neighbor, etc. Questions are worth different amounts, so be sure to look over all
the questions and plan your time accordingly. Please sign the honor pledge below.

The Tao that is seen
Is not the true Tao,
until You bring fresh toner.

(the bubble footer is automatically inserted into this space)



CS 2150 Exam 2, spring 2013 Page 2 of 6 UVa userid:

Page 2: Trees
1. [4 points] What are the 5 properties of red-black trees?

2. [8 points] Give on advantage and one disadvantage of each of the four types of trees that
we have studied: BST, AVL, Red-black, and Splay. Note that you can not use a single fact
two ways. For example, if tree x is faster than tree y, then you can only use that once (i.e.,
you can say that as an advantage of tree x, but you can not also say that tree y is slower than

x as a disadvantage of y).

| Advantage \ Disadvantage

BST

AVL

Red-
black

Splay




CS 2150 Exam 2, spring 2013 Page 3 of 6 UVa userid:

Page 3: Hashes

3. [8 points] Consider the four hash tables below, each with a different collision resolution
strategy. The primary hash function is h(z) = x mod 10, and the secondary hash function is
ha(x) = (x mod 8) + 1; note that h,(27) = 4. Insert the following values into each of the hash
tables: 47, 38, 11, 27.

Linear Quadriatic Double Separate

probing probing hashing chaining
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 8 8
9 9 9 9

4. [4 points] What are the three necessary properties for a good hash function? Which are
absolutely required, and which are necessary for good performance?



CS 2150 Exam 2, spring 2013 Page 4 of 6 UVa userid:
Page 4: IBCM

5. [12 points] Given a two-dimensional array of size 10x10 in row-major order somewhere in
memory, write IBCM code to compute the instruction to load, into the accumulator, the
value at location a[r][c].

You may assume:

the array is zero-indexed, just like C/C++

all cells are 1 memory space in size

that ’a’, 'r’, and ¢’ are all defined variables

there is a multiply function (see below)

that you need to store the final instruction at the spot with label "doit’

you may define any other obvious memory values ('ten’, for example) that you wish

To call the multiply function, load the two parameters into memory spots ‘p1” and "p2’, and
then call ‘brl multiply’. Upon return, the result will be stored in memory spot "ret’.

Your code should be in opcodes, NOT in hex!



CS 2150 Exam 2, spring 2013 Page 5 of 6 UVa userid:

Page 5: x86

6. [3 points] What are the rules for addressing memory in x86? Meaning, how can you combine
registers, etc., to specify a memory address?

7. [3 points] When a subroutine is compiled into assembly, why does C++ use a different nam-
ing convention than C?

8. [3 points] Why can you not access memory twice in a single instruction? For example, why
isadd [var] [eax] invalid?

9. [3 points] The push and pop instructions can be implemented using other instructions that
we have learned. Give such an alternate implementation, in x86 opcodes, for both of those
instructions. In other words, write x86 opcodes that have the same effect as push and pop.

Assume the register being pushed or popped is eax.



CS 2150 Exam 2, spring 2013 Page 6 of 6 UVa userid:

Page 6: Miscellaneous

10. [3 points] Why is there no little-theta?

11. [3 points] Give an example how you would use limits to determine the big-Theta (or big-Oh,
or big-Omega, etc.) running time of a function. Only one example is needed here.

12. [6 points] Given the following expression in in-fix notation, draw an expression tree, and
determine the pre-fix and post-fix versions of this expression. The expressionis (1+7)* (8 —
(4/2)), and it evaluates to 48.



