CS 216 (091) Exam 2
Page 1 of 10 Name: Email ID:

CS 216 Exam 2

You MUST write your name and e-mail ID on EACH page and bubble in your userid at the bottom of EACH
page — including this page.

If you are still writing when “pens down” is called, your exam will be ripped up and not graded — even if
you are still writing to fill in the bubble forms. So please do that first. Sorry to have to be strict on this.

Other than bubbling in your userid at the bottom, please do not write in the footer section of each page.
There are 10 pages to this exam — once the exam starts, please make sure you have all 10 pages.

Pages 2-9 are worth 12 points each (for a total of 96 points), and the first and last pages are worth 2 points
each. The three point questions on this exam should not take more than a line or two to answer — your
answer should not exceed about 20 words. There are 100 points of questions and 1 hour 45 minutes (105
minutes) to take the exam, which means you should spend one minute per question point — the other 5
minutes are to fill out the bubble footers.

If you do not bubble in a page, you will not receive credit for that page!
This exam is CLOSED text book, closed-notes, closed-calculator, closed-cell phone, closed-computer,

closed-neighbor, etc. Questions are worth different amounts, so be sure to look over all the questions and
plan your time accordingly. Please sign the honor pledge here:

Out of memory.
We wish to hold the whole sky,
But we never will.

(the bubble footer is automatically inserted in this space)

CS 216 (091) Exam 2
Page 2 of 10 Name: Email ID:

Older Material and Trees

1. [3 points] Why might we want to write a method template?

2. [3 points] Why is there so much imprecision in floating point numbers? For example, if we added 0.1
ten times, we would not get 1.0, but instead get 0.9999999999999999. What is the mathematical
reason for this?

3. [3 points] We say that a splay tree has ®(log n) amortized running time for the major operations.
What does the “amortized” portion of that running time mean?

4. [3 points] What is the complete algorithm for removal of a value from a binary search tree? You only
need a (short!) paragraph in English to describe this — pseudo code (or regular code) is not needed.

(the bubble footer is automatically inserted in this space)

CS 216 (091) Exam 2
Page 3 of 10 Name: Email ID:

Trees

5. [3 points] Give three possible tree applications that do not use binary trees, but instead use a different
type of tree. Rephrased, give three possible tree applications for which a binary tree does not work.

6. [3 points] Consider a trinary tree, which is just like a binary tree, but there are three children per node
instead of two children. A trinary tree is still ordered — the left subtree’s values are all less than the
center subree’s values, which are all less than the right subtree’s values. The value in a given node is
between the left and center (or, depending on the implementation, between the center and the right).
What is the running time for such a tree for the primary operations (insert, find, delete)? Briefly, why?

7. [6 points] Prove by induction that the maximum number of nodes in a binary tree of height h is 2.

(the bubble footer is automatically inserted in this space)

CS 216 (091) Exam 2
Page 4 of 10 Name: Email ID:

Trees

8. [6 points] Consider the three types of self-balancing trees that we have seen: AVL, red-black, and splay.
BRIEFLY give one advantage and one disadvantage of each of these trees. If it’s not obvious, explain
why.

9. [6 points] Show an unbalanced AVL tree (i.e. after an insert, but before rebalancing) that requires a
double rotation to fix it — and try to keep the tree as small as possible. Perform the double rotation,
and show the intermediate step.

(the bubble footer is automatically inserted in this space)

CS 216 (091) Exam 2
Page 5 of 10 Name: Email ID:

Hash Tables

10. [6 points] Consider the four types of collision resolution that we have seen: separate chaining, linear
probing, quadratic probing, and double hashing. BRIEFLY give one advantage and one disadvantage of
each of these types of collision resolution.

11. [3 points] What is the big-theta for the insert and find operations on a hash table that uses a probing
strategy for collision resolution?

12. [3 points] What properties must a good hash function have?

(the bubble footer is automatically inserted in this space)

CS 216 (091) Exam 2
Page 6 of 10 Name: Email ID:

Hash Tables

Although there is a lot of text on this page, we will give you 12 points on your exam for reading it,
as long as you fill in the bubble footer at the bottom of the page.

We have seen three probing strategies for collision resolution — while they are generally faster than
separate chaining, they suffer from the drawback that a single operation can take quite some time (worst
case O(n)) if there is a large cluster of keys. We present a collision resolution algorithm developed in 1986
called Robin Hood Hashing (it’s real name). The actual algorithm is based off of double hashing, but we
will base it off of linear probing to make it simpler for this exam.

Robin Hood hashing operates like a normal linear probing algorithm. However, after a collision, as
we are ‘probing’ for a spot to insert the collided key, we pay attention to the distance that the collided key
is from its original hashed spot, as well as the distance that the value in each successively probed spot is
from its original hashed spot. Whichever key has the lower distance is moved forward. Thus, if the
collided key probes a particular spot, and the key in that spot has a lower distance (from its original hashed
spot) than the collided key, then the collided key goes into that spot, and the key that was in that spot is
moved to probe the next spot to repeat this algorithm. On a tie (of distance to the respective original
hashed spots), the collided key is moved forward. The name ‘Robin Hood’ comes from the fact that the
wealth is being shared — here, the distance to the hashed value is being kept as short as possible (the
wealth is the shortest distance to the original hashed spot). The purpose of this algorithm is to keep the
amount of movement through a cluster (on a find, for example) down to a minimum.

As an example, consider the case to the right where a (partial)
hash table has two elements inserted into it at spots 15 and 16. We'll 15 | Fifteen
assume, for simplicity, that the key is the spelled-out word at that 16 | Sixteen
particular index. Neither of the two elements had a collision when 17
inserted — they hashed directly to the spot that they appear in the
table.

Next, the insertion of “Fifteen-point-one” occurs, and (not
surprisingly), it hashes to spot 15, which causes a collision. In a normal

linear probing collision resolution, it goes into spot 17. As this is Robin 15 | Fifteen
Hood hashing, we check the distance to the original hashed spots (we 16 | Fifteen-point-one
start at index 15) — both hash to the same spot (also 15), so on a tie, 17 | Sixteen

we move the collided key (“Fifteen-point-one”) forward. On the next
spot (index 16), there is also a collision. When we examine the key in
spot 16, we note that the key “Sixteen” is zero spots away from its
hash, and Fifteen-point-one is one spot away — thus, we move Sixteen
to the next spot. Thus, the final hash table looks like the table to the
right.

(the bubble footer is automatically inserted in this space)

CS 216 (091) Exam 2
Page 7 of 10 Name: Email ID:

13. [12 points] Hash my TAs! | can’t keep track of my teaching assistants, so | want to put them into a hash
table. Below you will see a hash table of size 9 (nine, not ten!), and a list of the TAs and their hash
codes, which have already been computed for a hash table of size 9. Hash the TAs into the hash table
following the Robin Hood hashing algorithm described above. You must hash them in the order shown
below (i.e., top to bottom)!

0
TA Hash code

Briana 7

Dan 2 1
Jeff 4
John 0

Josh 2 2
Randolph 2
Wil 3

3

4

5

6

7

8

(the bubble footer is automatically inserted in this space)

CS 216 (091) Exam 2
Page 8 of 10 Name: Email ID:

14. [3 points] What are the advantages of Robin Hood hashing versus linear probing?

15. [3 points] What are the disadvantages of Robin Hood hashing versus linear probing?

16. [3 points] What is the running time of an insert in Robin Hood hashing? Why?

17. [3 points] What is the running time of a find in Robin Hood hashing? Why?

(the bubble footer is automatically inserted in this space)

CS 216 (091) Exam 2

Page 9 of 10 Name: Email ID:
IBCM
18. [12 points] Write an IBCM program that will read a positive number from the IBCM
keyboard, convert it into the 2’s complement version of its negation (i.e. 17 goes to 0 halt
-17), and print out the result. The only restriction is that you may NOT do this via 1 I/O
subtraction (i.e. using the sub opcode, adding a negative number, or similar) — you 2 shifts
need to implement the program to negate the number by making the necessary 3 load
binary modifications. As a hint, you will need the not opcode. The number that 4 store
you read in may be either positive or negative (this shouldn’t affect your algorithm). 5 add
Note that the number is read in (and written out) in hex, but the number will still be 6 sub
the hex value for a 2’s complement number. Your answer should have both the 7 and
hexadecimal machine code and the opcodes — you can include just the latter for 3 or
partial credit. 9 or
A not
B nop
C jmp
D jmpe
E jmpl
F brl

(the bubble footer is automatically inserted in this space)

CS 216 (091) Exam 2
Page 10 of 10

Name:

Email ID:

This page unintentionally left blank.

But you get two points for bubbling in the form at the bottom of this page. Woo-hoo!

HEY, CHECK /T OUT: @™ =11 15
119.999099979. THATS WEIRD.

YEAH. THAT'S HOW I |
GOT KICKED OUT OF
THE ACM N COLLEGE.

¥

DURING A COMPETITION, T
TOLD THE PROGRAMMERS ON
OUR TEAM THAT @"-1r

WHAS A STANDARD TEST OF FLOATING-

POINT HANDLERS -- IT WOULD
(OME OUT To 20 UNLESS
THEY HAD ROUNDING ERRORS.

3

YEAH, THEY DUG THRoUGH
HALF THEIR ALGORITHMS
LOOKING FOR THE BJG
BEFORE THEY FIGURED
IT OUT.

THATS

kA

(the bubble footer is automatically inserted in this space)

