
Chapter 1

The 32 bit x86 C Calling Convention

. . .

This chapter was derived from a document written by Adam Ferrari and later updated by Alan Batson, Mike Lack
and Anita Jones

1.1 What is a Calling Convention?

At the end of the previous chapter, we saw a simple example of a subroutine defined in x86 assembly
language. In fact, this subroutine was quite simple – it did not modify any registers except EAX (which
was needed to return the result), and it did not call any other subroutines. In practice, such simple func-
tion definitions are rarely useful. When more complex subroutines are combined in a single program, a
number of complicating issues arise. For example, how are parameters passed to a subroutine? Can sub-
routines overwrite the values in a register, or does the caller expect the register contents to be preserved?
Where should local variables in a subroutine be stored? How should results be returned from functions?

To allow separate programmers to share code and develop libraries for use by many programs, and to
simplify the use of subroutines in general, programmers typically adopt a common calling convention. The
calling convention is simply a set of rules that answers the above questions without ambiguity to simplify
the definition and use of subroutines. For example, given a set of calling convention rules, a programmer
need not examine the definition of a subroutine to determine how parameters should be passed to that
subroutine. Furthermore, given a set of calling convention rules, high-level language compilers can be
made to follow the rules, thus allowing hand-coded assembly language routines and high-level language
routines to call one another.

In practice, even for a single processor instruction set, many calling conventions are possible. In this
class we will examine and use one of the most important conventions: the C language calling convention.
Understanding this convention will allow you to write assembly language subroutines that are safely
callable from C and C++ code, and will also enable you to call C library functions from your assembly
language code.

1

2 CHAPTER 1. THE 32 BIT X86 C CALLING CONVENTION

1.2 The C Calling Convention

The C calling convention is based heavily on the use of the hardware-supported stack. To understand the
C calling convention, you should first make sure that you fully understand the push, pop, call, and ret
instructions – these will be the basis for most of the rules. In this calling convention, subroutine parame-
ters are passed on the stack. Registers are saved on the stack, and local variables used by subroutines are
placed in memory on the stack. In fact, this stack-centric implementation of subroutines is not unique to
the C language or the x86 architecture. The vast majority of high-level procedural languages implemented
on most processors have used similar calling convention.

The calling convention is broken into two sets of rules. The first set of rules is employed by the caller
of the subroutine, and the second set of rules is observed by the writer of the subroutine (the “callee”). It
should be emphasized that mistakes in the observance of these rules quickly result in fatal program errors;
thus meticulous care should be used when implementing the call convention in your own subroutines.

1.3 The Caller’s Rules

The caller should adhere to the following rules when invoking a subroutine:

1. Before calling a subroutine, the caller should save the contents of certain registers that are desig-
nated caller-saved. The caller-saved registers are EAX, ECX, EDX. If you want the contents of these
registers to be preserved across the subroutine call, push them onto the stack.

2. To pass parameters to the subroutine, push them onto the stack before the call. The parameters
should be pushed in inverted order (i.e. last parameter first) – since the stack grows down, the first
parameter will be stored at the lowest address (this inversion of parameters was historically used to
allow functions to be passed a variable number of parameters).

3. To call the subroutine, use the call instruction. This instruction places the return address on top of
the parameters on the stack, and branches to the subroutine code.

4. After the subroutine returns, (i.e. immediately following the call instruction) the caller must remove
the parameters from stack. This restores the stack to its state before the call was performed.

5. The caller can expect to find the return value of the subroutine in the register EAX.
6. The caller restores the contents of caller-saved registers (EAX, ECX, EDX) by popping them off of

the stack. The caller can assume that no other registers were modified by the subroutine.

1.4 The Callee’s Rules

The definition of the subroutine should adhere to the following rules:

1. At the beginning of the subroutine, the function should push the value of EBP onto the stack, and
then copy the value of ESP into EBP using the following instructions:

Listing 1.1: x86 callee code, part 1

push ebp
mov ebp , esp

1.4. THE CALLEE’S RULES 3

The reason for this initial action is the maintenance of the base pointer, EBP. The base pointer is
used by convention as a point of reference for finding parameters and local variables on the stack.
Essentially, when any subroutine is executing, the base pointer is a “snapshot” of the stack pointer
value from when the subroutine started executing. Parameters and local variables will always be
located at known, constant offsets away from the base pointer value. We push the old base pointer
value at the beginning of the subroutine so that we can later restore the appropriate base pointer
value for the caller when the subroutine returns. Remember, the caller isn’t expecting the subroutine
to change the value of the base pointer. We then move the stack pointer into EBP to obtain our point
of reference for accessing parameters and local variables.

2. Next, allocate local variables by making space on the stack. Recall, the stack grows down, so to
make space on the top of the stack, the stack pointer should be decremented. The amount by which
the stack pointer is decremented depends on the number of local variables needed. For example, if
3 local integers (4 bytes each) were required, the stack pointer would need to be decremented by 12
to make space for these local variables. I.e:

Listing 1.2: x86 callee code, part 2

sub esp , 12

As with parameters, local variables will be located at known offsets from the base pointer.
3. Next, the values of any registers that are designated callee-saved that will be used by the function

must be saved. To save registers, push them onto the stack. The callee-saved registers are EBX, EDI
and ESI (ESP and EBP will also be preserved by the call convention, but need not be pushed on the
stack during this step).
After these three actions are performed, the actual operation of the subroutine may proceed. When
the subroutine is ready to return, the call convention rules continue:

4. When the function is done, the return value for the function should be placed in EAX if it is not
already there.

5. The function must restore the old values of any callee-saved registers (EBX, EDI and ESI) that were
modified. The register contents are restored by popping them from the stack. Note, the registers
should be popped in the inverse order that they were pushed.

6. Next, we deallocate local variables. The obvious way to do this might be to add the appropriate
value to the stack pointer (since the space was allocated by subtracting the needed amount from the
stack pointer). In practice, a less error-prone way to deallocate the variables is to move the value in
the base pointer into the stack pointer, i.e.:

Listing 1.3: x86 callee code, part 3

mov esp , ebp

This trick works because the base pointer always contains the value that the stack pointer contained
immediately prior to the allocation of the local variables.

7. Immediately before returning, we must restore the caller’s base pointer value by popping EBP off
the stack. Remember, the first thing we did on entry to the subroutine was to push the base pointer
to save its old value.

8. Finally, we return to the caller by executing a ret instruction. This instruction will find and remove
the appropriate return address from the stack.

It might be noted that the callee’s rules fall cleanly into two halves that are basically mirror images of
one another. The first half of the rules apply to the beginning of the function, and are therefor commonly

4 CHAPTER 1. THE 32 BIT X86 C CALLING CONVENTION

Listing 1.4: Example function call, caller’s rules obeyed

; Want t o c a l l a f u n c t i o n ”myFunc” t h a t t a k e s t h r e e
; i n t e g e r p a r a m e t e r s . F i r s t p a r a m e t e r i s in EAX.
; Second p a r a m e t e r i s t h e c o n s t a n t 123 . Th i rd
; p a r a m e t e r i s in memory l o c a t i o n ” var ”

push [var] ; Push l a s t p a r a m e t e r f i r s t
push 123
push eax ; Push f i r s t p a r a m e t e r l a s t

c a l l myFunc ; C a l l t h e f u n c t i o n (assume C naming)

; On re turn , c l e a n up t h e s t a c k . We have 12 b y t e s
; (3 p a r a m e t e r s ∗ 4 b y t e s e a c h) on t h e s t a c k , and t h e
; s t a c k grows down. Thus , t o g e t r i d o f t h e p a r a m e t e r s ,
; we can s imp ly add 12 t o t h e s t a c k p o i n t e r

add esp , 12

; The r e s u l t p roduced by ”myFunc” i s now a v a i l a b l e f o r
; use in t h e r e g i s t e r EAX. No o t h e r r e g i s t e r v a l u e s
; have changed

said to define the prologue to the function. The latter half of the rules apply to the end of the function, and
are thus commonly said to define the epilogue of the function.

1.5 Calling Convention Example

The above rules may seem somewhat abstract on first examination. In practice, the rules become simple
to use when they are well understood and familiar. To start the process of better understanding the call
convention, we now examine a simple example of a subroutine call and a subroutine definition.

In Listing 1.4 a sample function call is depicted. Note how the caller pushes the parameters onto
the stack in inverted order before the call. The call instruction is used to jump to the beginning of the
subroutine in anticipation of the fact that the subroutine will use the ret instruction to return when the
subroutine completes. When the subroutine returns, the parameters must be removed from the stack. A
simple way to do this is to add the appropriate amount to the stack pointer (since the stack grows down).
Finally, the result is available in EAX.

Relative to the caller’s rules, the callee’s rules are somewhat more complex. An example subroutine
implementation that obeys the callee’s rules is depicted in Listing 1.5. The subroutine prologue performs
the standard actions of saving a snapshot of the stack pointer in EBP (the base pointer), allocating local
variables by decrementing the stack pointer, and saving register values on the stack.

In the body of the subroutine we can now more clearly see the use of the base pointer illustrated. Both
parameters and local variables are located at constant offsets from the base pointer for the duration of the

1.5. CALLING CONVENTION EXAMPLE 5

Listing 1.5: Example function definition, callee’s rules obeyed

globa l myFunc

s e c t i o n . t e x t

myFunc :
; ∗∗∗ Standard s u b r o u t i n e p r o l o g u e ∗∗∗
push ebp ; Save t h e o l d b a s e p o i n t e r v a l u e .
mov ebp , esp ; S e t t h e new b a s e p o i n t e r v a l u e .
sub esp , 4 ; Make room f o r one 4−b y t e l o c a l v a r i a b l e .
push edi ; Save t h e v a l u e s o f r e g i s t e r s t h a t t h e f u n c t i o n
push e s i ; w i l l m o d i f y . Th i s f u n c t i o n u s e s EDI and E S I .

; (no need t o s a v e EAX, EBP , or ESP)

; ∗∗∗ S u b r o u t i n e Body ∗∗∗
mov eax , [ebp+8] ; Put v a l u e o f p a r a m e t e r 1 i n t o EAX
mov esi , [ebp+12] ; Put v a l u e o f p a r a m e t e r 2 i n t o ESI
mov edi , [ebp+16] ; Put v a l u e o f p a r a m e t e r 3 i n t o EDI

mov [ebp−4] , edi ; Put EDI i n t o t h e l o c a l v a r i a b l e
add [ebp−4] , e s i ; Add ESI i n t o t h e l o c a l v a r i a b l e
add eax , [ebp−4] ; Add t h e c o n t e n t s o f t h e l o c a l v a r i a b l e

; i n t o EAX (f i n a l r e s u l t)

; ∗∗∗ Standard s u b r o u t i n e e p i l o g u e ∗∗∗
pop e s i ; R e c o v e r r e g i s t e r v a l u e s
pop edi
mov esp , ebp ; D e a l l o c a t e l o c a l v a r i a b l e s
pop ebp ; R e s t o r e t h e c a l l e r ’ s b a s e p o i n t e r v a l u e
r e t

subroutines execution. In particular, we notice that since parameters were placed onto the stack before
the subroutine was called, they are always located below the base pointer (i.e. at higher addresses) on the
stack. The first parameter to the subroutine can always be found at memory location [EBP+8], the second
at [EBP+12], the third at [EBP+16], and so on. Similarly, since local variables are allocated after the base
pointer is set, they always reside above the base pointer (i.e. at lower addresses) on the stack. In particular,
the first local variable is always located at [EBP-4], the second at [EBP-8], and so on. Understanding this
conventional use of the base pointer allows us to quickly identify the use of local variables and parameters
within a function body.

The function epilogue, as expected, is basically a mirror image of the function prologue. The caller’s
register values are recovered from the stack, the local variables are deallocated by resetting the stack
pointer, the caller’s base pointer value is recovered, and the ret instruction is used to return to the ap-
propriate code location in the caller.

A good way to visualize the operation of the calling convention is to draw the contents of the nearby
region of the stack during subroutine execution. Figure 1.1 depicts the contents of the stack during the

6 CHAPTER 1. THE 32 BIT X86 C CALLING CONVENTION

execution of the body of myFunc (myFunc is depicted in Listing 1.5). Notice, lower addresses are depicted
lower in the figure, and thus the “top” of the stack is the bottom-most cell. This corresponds visually to
the intuitive statement that the x86 hardware stack “grows down.” The cells depicted in the stack are
32-bit wide memory locations, thus the memory addresses of the cells are 4 bytes apart. From this picture
we see clearly why the first parameter resides at an offset of 8 bytes from the base pointer. Above the
parameters on the stack (and below the base pointer), the call instruction placed the return address, thus
leading to an extra 4 bytes of offset from the base pointer to the first parameter.

(saved value of ebp)

(return address)

parameter 1

parameter 2

parameter 3

local variable 1

ebp

saved value of edi

saved value of esi
esp

[ebp+8]

[ebp+12]

[ebp+16]

Higher Addresses

Lower Addresses

[ebp-4]

Figure 1.1: A picture of the stack in memory during the execution of the body of myFunc

The assembly code for myFunc() was shown above in Listing 1.5. The C++ code to call that subrou-
tine is shown in Listing 1.6.

1.5. CALLING CONVENTION EXAMPLE 7

Listing 1.6: Example C++ code to invoke a 3-parameter x86 subroutine

include <iostream>
using namespace std ;

extern ”C” i n t myFunc (int , int , i n t) ;

i n t main () {
i n t x = 3 ;
cout << ”myFunc () returned : ”

<< myFunc (x , 5 , 1 0) << endl ;
return 0 ;

}

