
Chapter 1

x86 Assembly, 32 bit

. . .

This chapter was derived from a document written by Adam Ferrari and later updated by Alan Batson, Mike Lack,
Anita Jones, and Aaron Bloomfield

1.1 Introduction

This small guide, in combination with the material covered in the class lectures on assembly language
programming, should provide enough information to do the assembly language labs for this class. In this
guide, we describe the basics of 32-bit x86 assembly language programming, covering a small but useful
subset of the available instructions and assembler directives. However, real x86 programming is a large
and extremely complex universe, much of which is beyond the useful scope of this class. For example,
there exists real (albeit older) x86 code running in the world was written using the 16-bit subset of the x86
instruction set. Using the 16-bit programming model can be quite complex – it has a segmented memory
model, more restrictions on register usage, and so on. In this guide we’ll restrict our attention to the more
modern aspects of 32-bit x86 programming, and delve into the instruction set only in enough detail to get
a basic feel for programming x86 compatible chips at the hardware level.

1.2 Registers

Modern (i.e., 386 and beyond) x86 processors have eight 32-bit general purpose registers, as depicted
in Figure 1.1. The register names are mostly historical in nature. For example, EAX used to be called
the “accumulator” since it was used by a number of arithmetic operations, and ECX was known as the
“counter” since it was used to hold a loop index. Whereas most of the registers have lost their special
purposes in the modern instruction set, by convention, two are reserved for special purposes – the stack
pointer (ESP) and the base pointer (EBP).

In some cases, namely EAX, EBX, ECX, and EDX, subsections of the registers may be used. For exam-
ple, the least significant 2 bytes of EAX can be treated as a 16-bit register called AX. The least significant
byte of AX can be used as a single 8-bit register called AL, while the most significant byte of AX can
be used as a single 8-bit register called AH. It is important to realize that these names refer to the same

1

2 CHAPTER 1. X86 ASSEMBLY, 32 BIT

BH

CH

DH

AH

EBP Base Pointer

ESI

ESP Stack Pointer

EDI

DL

CL

BL

ALAX

BX

CX

DX

ECX

EAX

EBX

EDX

32 bits

16 bits

8 bits8 bits

General-purpose
Registers

Figure 1.1: The x86 register set

physical register. When a two-byte quantity is placed into DX, the update affects the value of EDX (in
particular, the least significant 16 bits of EDX). These “sub-registers” are mainly hold-overs from older,
16-bit versions of the instruction set. However, they are sometimes convenient when dealing with data
that are smaller than 32-bits (e.g., 1-byte ASCII characters).

When referring to registers in assembly language, the names are not case-sensitive. For example, the
names EAX and eax refer to the same register.

1.3 Memory and Addressing Modes

1.3.1 Declaring Static Data Regions

You can declare static data regions (analogous to global variables) in x86 assembly using special assembler
directives for this purpose. Data declarations should be preceded by the .DATA directive. Following this
directive, the directives DB, DW, and DD can be used to declare one, two, and four byte data locations,
respectively. Declared locations can be labeled with names for later reference - this is similar to declaring
variables by name, but abides by some lower level rules. For example, locations declared in sequence will
be located in memory next to one another. Some example declarations are depicted in Listing 1.1.

The last example in Listing 1.1 illustrates the declaration of an array. Unlike in high level languages
where arrays can have many dimensions and are accessed by indices, arrays in assembly language are
simply a number of cells located contiguously in memory. Two other common methods used for declar-
ing arrays of data are the TIMES directive and the use of string literals. The TIMES directive tells the
assembler to duplicate an expression a given number of times. For example, the statement “TIMES 4 DB
2” is equivalent to “2, 2, 2, 2”. Some examples of declaring arrays are depicted in Listing 1.2.

1.3. MEMORY AND ADDRESSING MODES 3

Listing 1.1: Declaring x86 memory regions

s e c t i o n . d a t a
var DB 64 ; D e c l a r e a b y t e c o n t a i n i n g t h e v a l u e 64 . L a b e l t h e

; Memory l o c a t i o n ” var ” .
var2 DB ? ; D e c l a r e an u n i n i t i a l i z e d b y t e l a b e l e d ” var2 ” .

DB 10 ; D e c l a r e an u n l a b e l e d b y t e i n i t i a l i z e d t o 10 . Th i s
; b y t e w i l l r e s i d e a t t h e memory a d d r e s s var2 +1 .

X DW ? ; D e c l a r e an u n i n i t i a l i z e d two−b y t e word l a b e l e d ”X” .
Y DD 3000 ; D e c l a r e 32 b i t s o f memory s t a r t i n g a t a d d r e s s ”Y”

; i n i t i a l i z e d t o c o n t a i n 3000 .
Z DD 1 ,2 ,3 ; D e c l a r e t h r e e 4−b y t e words o f memory s t a r t i n g a t

; a d d r e s s ”Z” , and i n i t i a l i z e d t o 1 , 2 , and 3 ,
; r e s p e c t i v e l y . E . g . 3 w i l l be s t o r e d a t a d d r e s s Z+8 .

Listing 1.2: Declaring x86 arrays in memory

s e c t i o n . d a t a
bytes TIMES 10 DB ? ; D e c l a r e 10 u n i n i t i a l i z e d b y t e s s t a r t i n g a t

; t h e a d d r e s s ” b y t e s ” .
a r r TIMES 100 DD 0 ; D e c l a r e 100 4 b y t e s words , a l l i n i t i a l i z e d

; t o 0 , s t a r t i n g a t memory l o c a t i o n ” a r r ” .
s t r DB ’ h e l l o ’ , 0 ; D e c l a r e 5 b y t e s s t a r t i n g a t t h e a d d r e s s

; ” s t r ” i n i t i a l i z e d t o t h e ASCII c h a r a c t e r
; v a l u e s f o r t h e c h a r a c t e r s ’ h ’ , ’ e ’ , ’ l ’ ,
; ’ l ’ , ’ o ’ , and ’\0 ’ (NULL) , r e s p e c t i v e l y .

1.3.2 Addressing Memory

Modern x86-compatible processors are capable of addressing up to 232 bytes of memory; that is, memory
addresses are 32-bits wide. For example, in Listings 1.1 and 1.2, where we used labels to refer to memory
regions, these labels are actually replaced by the assembler with 32-bit quantities that specify addresses
in memory. In addition to supporting referring to memory regions by labels (i.e. constant values), the x86
provides a flexible scheme for computing and referring to memory addresses:

x86 Addressing Mode Rule – Up to two of the 32-bit registers and a 32-bit signed constant can be
added together to compute a memory address. One of the registers can be optionally pre-multiplied by
2, 4, or 8.

To see this memory addressing rule in action, we’ll look at some example mov instructions. As we’ll
see later in Section 1.4.1, the mov instruction moves data between registers and memory. This instruction
has two operands – the first is the destination (where we’re moving data to) and the second specifies the
source (where we’re getting the data from). Some examples of mov instructions using address computa-
tions that obey the above rule are shown in Listing 1.3.

Some examples of incorrect address calculations are shown in Listing 1.4.

4 CHAPTER 1. X86 ASSEMBLY, 32 BIT

Listing 1.3: Valid x86 addressing modes

mov eax , [ebx] ; Move t h e 4 b y t e s in memory a t t h e a d d r e s s c o n t a i n e d
; in EBX i n t o EAX

mov [var] , ebx ; Move t h e c o n t e n t s o f EBX i n t o t h e 4 b y t e s a t memory
; a d d r e s s ” var ” (Note , ” var ” i s a 32− b i t c o n s t a n t) .

mov eax , [esi −4] ; Move 4 b y t e s a t memory a d d r e s s ESI +(−4) i n t o EAX
mov [e s i +eax] , c l ; Move t h e c o n t e n t s o f CL i n t o t h e b y t e a t a d d r e s s

; ESI+EAX
mov edx , [e s i +4∗ebx] ; Move t h e 4 b y t e s o f d a t a a t a d d r e s s ESI+4∗EBX i n t o

; EDX

Listing 1.4: Invalid x86 addressing modes

mov eax , [ebx−ecx] ; Can on ly add r e g i s t e r v a l u e s
mov [eax+ e s i +edi] , ebx ; At most 2 r e g i s t e r s in a d d r e s s c o m p u t a t i o n

1.3.3 Size Directives

In general, the intended size of the of the data item at a given memory address can be inferred from the
assembly code instruction in which it is referenced. For example, in all of the above instructions, the size
of the memory regions could be inferred from the size of the register operand – when we were loading
a 32-bit register, the assembler could infer that the region of memory we were referring to was 4 bytes
wide. When we were storing the value of a one byte register to memory, the assembler could infer that
we wanted the address to refer to a single byte in memory. However, in some cases the size of a referred-to
memory region is ambiguous. Consider the instruction mov [ebx], 2.

Should this instruction move the value 2 into the single byte at address EBX? Perhaps it should move
the 32-bit integer representation of 2 into the 4-bytes starting at address EBX. Since either is a valid pos-
sible interpretation, the assembler must be explicitly directed as to which is correct. The size directives
BYTE PTR, WORD PTR, and DWORD PTR serve this purpose. For examples, see Listing 1.5.

Listing 1.5: x86 size directive usage

mov BYTE PTR [ebx] , 2 ; Move 2 i n t o t h e s i n g l e b y t e a t memory
; l o c a t i o n EBX

mov WORD PTR [ebx] , 2 ; Move t h e 16− b i t i n t e g e r r e p r e s e n t a t i o n o f 2
; i n t o t h e 2 b y t e s s t a r t i n g a t a d d r e s s EBX

mov DWORD PTR [ebx] , 2 ; Move t h e 32− b i t i n t e g e r r e p r e s e n t a t i o n o f 2
; i n t o t h e 4 b y t e s s t a r t i n g a t a d d r e s s EBX

1.4. INSTRUCTIONS 5

1.4 Instructions

Machine instructions generally fall into three categories: data movement, arithmetic/logic, and control-
flow. In this section, we will look at important examples of x86 instructions from each category. This
section should not be considered an exhaustive list of x86 instructions, but rather a useful subset.

In this section, we will use the following notation:

• <reg32> - means any 32-bit register described in Section 2, for example, ESI.
• <reg16> - means any 16-bit register described in Section 2, for example, BX.
• <reg8> - means any 8-bit register described in Section 2, for example AL.
• <reg> - means any of the above.
• <mem> - will refer to a memory address, as described in Section 1.3.2, for example [EAX], or
[var+4], or DWORD PTR [EAX+EBX].
• <con32> - means any 32-bit constant.
• <con16> - means any 16-bit constant.
• <con8> - means any 8-bit constant.
• <con> - means any of the above sized constants.

1.4.1 Data Movement Instructions

Instruction: mov
Syntax: mov <reg>,<reg>

mov <reg>,<mem>
mov <mem>,<reg>
mov <reg>,<const>
mov <mem>,<const>

Semantics: The mov instruction moves the data item referred to by its second operand (i.e. reg-
ister contents, memory contents, or a constant value) into the location referred to by
its first operand (i.e. a register or memory). While register-to-register moves are pos-
sible, direct memory-to-memory moves are not. In cases where memory transfers are
desired, the source memory contents must first be loaded into a register, then can be
stored to the destination memory address.

Examples: mov eax, ebx
mov BYTE PTR [var], 5

; transfer ebx to eax
; store the value 5 into the byte at
; memory location ‘‘var’’

Instruction: push
Syntax: push <reg32>

push <mem>
push <con32>

Semantics: The push instruction places its operand onto the top of the hardware supported stack
in memory. Specifically, push first decrements ESP by 4, then places its operand into
the contents of the 32-bit location at address [ESP]. ESP (the stack pointer) is decre-
mented by push since the x86 stack grows down – i.e. the stack grows from high
addresses to lower addresses.

Examples: push eax
push [var]

; push the contents of eax onto the stack
; push the 4 bytes at address ‘‘var’’ onto stack

6 CHAPTER 1. X86 ASSEMBLY, 32 BIT

Instruction: pop
Syntax: pop <reg32>

pop <mem>
Semantics: The pop instruction removes the 4-byte data element from the top of the hardware

supported stack into the specified operand (i.e. register or memory location). Specifi-
cally, pop first moves the 4 bytes located at memory location [ESP] into the specified
register or memory location, and then increments SP by 4.

Examples: pop edi
pop [ebx]

; pop the top element of the stack into EDI.
; pop the top element of the stack into memory at
; the four bytes starting at location EBX.

Instruction: lea
Syntax: lea <reg32>,<mem>
Semantics: The lea instruction places the address specified by its second operand into the regis-

ter specified by its first operand. Note, the contents of the memory location are not
loaded – only the effective address is computed and placed into the register. This is
useful for obtaining a “pointer” into a memory region.

Examples: lea eax, [var]
lea edi, [ebx+4*esi]

; the address of ‘‘var’’ is placed in EAX
; the value EBX+4*ESI is placed in EDI

1.4.2 Arithmetic and Logic Instructions

Instruction: add, sub
Syntax: add <reg>,<reg> sub <reg>,<reg>

add <reg>,<mem> sub <reg>,<mem>
add <mem>,<reg> sub <mem>,<reg>
add <reg>,<con> sub <reg>,<con>
add <mem>,<con> sub <mem>,<con>

Semantics: The add instruction adds together its two operands, storing the result in its first
operand. Similarly, the sub instruction subtracts its second operand from its first.
Note, whereas both operands may be registers, at most one operand may be a mem-
ory location.

Examples: add eax, 10
sub [var], esi

add BYTE PTR [var], 10

; add 10 to the contents of EAX.
; subtract the contents of ESI from
; the 32-bit integer stored at
; memory location ‘‘var’’.
; add 10 to the single byte stored
; at memory address ‘‘var’’.

Instruction: inc, dec
Syntax: inc <reg> dec <reg>

inc <mem> dec <mem>
Semantics: The inc instruction increments the contents of its operand by one, and similarly dec

decrements the contents of its operand by one.
Examples: dec eax

inc DWORD PTR [var]
; subtract one from the contents of EAX.
; add one to the 32-bit integer stored at
; memory location ‘‘var’’.

1.4. INSTRUCTIONS 7

Instruction: imul
Syntax: imul <reg32>,<reg32>

imul <reg32>,<mem>
imul <reg32>,<reg32>,<con>
imul <reg32>,<mem>,<con>

Semantics: The imul instruction has two basic formats: two-operand (first two syntax listings
above) and three-operand (last two syntax listings above). The two-operand form
multiplies its two operands together and stores the result in the first operand. The
result (i.e., first) operand must be a register. The three operand form multiplies its
second and third operands together and stores the result in its first operand. Again,
the result operand must be a register. Furthermore, the third operand is restricted to
being a constant value.

Examples: imul eax, [var]

imul esi, edi, 25

; multiply the contents of EAX by the
; 32-bit contents of the memory location
; ‘‘var’’. Store the result in EAX.
; multiply the contents of EDI by 25.
; Store the result in ESI.

Instruction: idiv
Syntax: idiv <reg32>

idiv <mem>
Semantics: The idiv instruction is used to divide the contents of the 64 bit integer EDX:EAX (con-

structed by viewing EDX as the most significant four bytes and EAX as the least sig-
nificant four bytes) by the specified operand value. The quotient result of the division
is stored into EAX, while the remainder is placed in EDX. This instruction must be
used with care. Before executing the instruction, the appropriate value to be divided
must be placed into EDX and EAX. Clearly, this value is overwritten when the idiv
instruction is executed.

Examples: idiv ebx

idiv DWORD PTR [var]

; divide the contents of EDX:EAX by the
; contents of EBX. Place the quotient
; in EAX and the remainder in EDX.
; same as above, but divide by the
; 32-bit value stored at memory
; location ‘‘var’’.

Instruction: and, or, xor
Syntax: and <reg>,<reg> or <reg>,<reg> xor <reg>,<reg>

and <reg>,<mem> or <reg>,<mem> xor <reg>,<mem>
and <mem>,<reg> or <mem>,<reg> xor <mem>,<reg>
and <reg>,<con> or <reg>,<con> xor <reg>,<con>
and <mem>,<con> or <mem>,<con> xor <mem>,<con>

Semantics: These instructions perform the specified logical operation (logical bitwise and, or, and
exclusive or, respectively) on their operands, placing the result in the first operand
location.

Examples: and eax, 0fH
xor edx, edx

; clear all but the last 4 bits of EAX.
; set the contents of EDX to zero.

8 CHAPTER 1. X86 ASSEMBLY, 32 BIT

Instruction: not
Syntax: not <reg>

not <mem>
Semantics: Performs the logical negation of the operand contents (i.e., flips all bit values).
Examples: not BYTE PTR [var] ; negate all bits in the byte at the

; memory location ‘‘var’’.

Instruction: neg
Syntax: neg <reg>

neg <mem>
Semantics: Performs the arithmetic (i.e., two’s complement) negation of the operand contents.
Examples: neg eax

neg [var]
; negate the contents of EAX.
; negate the contests of ‘‘var’’

Instruction: shl, shr
Syntax: shl <reg>,<con8> shr <reg>,<con8>

shl <mem>,<con8> shr <mem>,<con8>
shl <reg>,cl shr <reg>,cl
shl <mem>,cl shr <mem>,cl

Semantics: These instructions shift the bits in their first operand’s contents left and right (shl and
shr, respectively), padding the resulting empty bit positions with zeros. The shifted
operand can be shifted up to 31 places. The number of bits to shift is specified by the
second operand, which can be either an 8-bit constant or the register CL. In either case,
shifts counts of greater then 31 are performed modulo 32.

Examples: shl eax 5

shr [var] 3

; shift the contents of eax left by 5 bit
; positions
; shift the contents of ‘‘var’’ right by 3
; bit positions

1.4.3 Control Flow Instructions

In this section, we will refer to labeled locations in the program text as <label>. Labels can be inserted
anywhere in x86 assembly code text by entering a label name followed by a colon. For example, con-
sider the code fragment in Listing 1.6. The second instruction in this code fragment is labeled “begin”.
Elsewhere in the code, we can refer to the memory location that this instruction is located at in memory
using the more convenient symbolic name “begin” instead of having to refer to the memory address as
an integer.

Listing 1.6: x86 labeled code location

mov esi , [ebp+8]
begin : xor ecx , ecx

mov eax , [e s i]

1.4. INSTRUCTIONS 9

Instruction: jmp
Syntax: jmp <label>
Semantics: Transfers program control flow to the instruction at the memory location indicated by

the operand.
Examples: jmp begin ; jumps to the ‘‘begin’’ label

Instruction: jCC
Syntax: je <label> ; Jump when equal

jne <label> ; Jump when not equal
jz <label> ; Jump when last result was zero
jg <label> ; Jump when greater than
jge <label> ; Jump when greater than or equal to
jl <label> ; Jump when less than
jle <label> ; Jump when less than or equal to

Semantics: These instructions are conditional jumps that are based on the status of a set of con-
dition codes that are stored in a special register called the machine status word. The
contents of the machine status word include information about the last arithmetic
operation performed. For example, one bit of this word indicates if the last result
was zero. Another indicates if the last result was negative. Based on these condition
codes, a number of conditional jumps can be performed. For example, the jz instruc-
tion performs a jump to the specified operand label if the result of the last arithmetic
operation (e.g. add, sub, etc.) was zero. Otherwise, control proceeds to the next in-
struction in sequence after the jz. These conditional jumps are the underlying support
needed to implement high-level language features such as “if” statements and loops
(e.g. “while” and “for”).

A number of the conditional branches are given names that are intuitively based on
the last operation performed being a special compare instruction, cmp (see below).
For example, conditional branches such as jle and jne are based on first performing a
cmp operation on the desired operands.

Examples: cmp eax, ebx
jle done

; if the contents of eax are less than or
; equal to the contents of EBX, jump to the
; code location labeled ‘‘done’’.

Instruction: cmp
Syntax: cmp <reg>,<reg>

cmp <reg>,<mem>
cmp <mem>,<reg>
cmp <reg>,<con>
cmp <mem>,<con>

Semantics: Compares the two specified operands, setting the condition codes in the machine sta-
tus word appropriately. In fact, this instruction is equivalent to the sub instruction,
except the result of the subtraction is discarded.

Examples: cmp DWORD PTR [var], 10
jeq loop

; if the 4 bytes stored at memory
; location ‘‘var’’ equal the 4-byte
; integer value 10, then jump to the
; code location labeled loop

10 CHAPTER 1. X86 ASSEMBLY, 32 BIT

Instruction: call
Syntax: call <label>
Semantics: This instruction implements a subroutine call that operates in cooperation with the

subroutine return instruction, ret, described below. This instruction first pushes the
current code location onto the hardware supported stack in memory (see the push
instruction for details), and then performs an unconditional jump to the code location
indicated by the label operand. The added value of this instruction (as compared to
the simple jmp instruction) is that it saves the location to return to when the subroutine
completes.

Examples: call my subroutine ; jumps to the ‘‘my subroutine’’ label,
; pushing the return address onto the
; stack

Instruction: ret
Syntax: ret
Semantics: In cooperation with the call instruction, the ret instruction implements a subroutine

return mechanism. This instruction first pops a code location off the hardware sup-
ported in-memory stack (see the pop instruction for details). It then performs an un-
conditional jump to the retrieved code location.

Examples: ret ; returns to the address on the top of the stack

1.5 Basic Program Structure

Listing 1.7: x86 code to return 2

globa l returnTwo

s e c t i o n . d a t a
var DD 2

s e c t i o n . t e x t

returnTwo :
mov eax , [var]
r e t

Given the above repertoire of instructions, you are in a posi-
tion to examine the basic skeletal structure of an assembly lan-
guage subroutine suitable for linking into C++ code. Unlike
C++, which is often used for the development of complete soft-
ware systems, assembly language is most often used in coopera-
tion with other languages such as Fortran, C, and C++. Com-
monly, most of a project is implemented in the more conve-
nient high-level language, and assembly language is used spar-
ingly to implement extremely low-level hardware interfaces or
performance-critical “inner loops.” Thus, in addition to under-
standing how to program in assembly language, it is equally im-
portant to understand how to link assembly language code into
high-level language programs.

Before examining the linkage conventions, we must first ex-
amine the basic structure of an assembly language file. To do this, we can compare a very simple assembly
language file to an equivalent C++ file. In Listings 1.7 and 1.8 we see two files, one in C++, the other in
x86 assembly. Each file includes a function (albeit an ugly one) to return the integer value 2.

The top of the assembly file contains two directives that indicate the instruction set and memory model
we will use for all work in this class (note, there are other possibilities – one might use only the older 80286
instruction set for wider compatibility, for example).

Next, where in the C++ file we find the declaration of the global variable “var”, in the assembly file
we find the use of the .DATA and DD directives (described in Section 3.1) to reserve and initialize a 4-byte

1.5. BASIC PROGRAM STRUCTURE 11

(i.e., integer-sized) memory region labeled “var”.

Listing 1.8: C++ code to return 2

i n t var = 2 ;

extern ”C” returnTwo () ;

i n t returnTwo () {
return var ;

}

Next in each file, we find the declaration of the function
named returnTwo. In the C++ file we have declared the func-
tion to be extern “C”. This declaration indicates that the C++
compiler should use C naming conventions when labeling the
function returnTwo in the resulting object file that it produces. In
fact, this naming convention means that the function returnTwo
should map to the label returnTwo in the object code. In the
assembly code, we have labeled the beginning of the subroutine
returnTwo using the PROC directive, and have declared the la-

bel returnTwo to be public. Again, the result of these actions
will be that the subroutine will map to the symbol returnTwo in
the object code that the assembler generates.

The function bodies are straight-forward. As we will see in more detail in Section 6, return values for
functions are placed into EAX by convention, hence the instruction to move the contents of “var” into
EAX in the assembly code.

Listing 1.9: Calling returnTwo() from C++

include <iostream>
using namespace std ;

extern ”C” i n t returnTwo () ;

i n t main () {
cout << ” c a l l i n g returnTwo () returned : ”

<< returnTwo () << endl ;
return 0 ;

}

Given these equivalent function defini-
tions, use of either version of the function
is the same. A sample call to the function
returnTwo is depicted in Listing 1.9. This
C++ code could be linked to either defi-
nition of the function and would produce
the same results (note, we could not link to
both definitions, or the linker would pro-
duce a “multiply defined symbol” error.
The mechanics of program linking will be
discussed in an associated document that
relates to the specific programming envi-
ronment that you will use to assemble and
run programs.

