
CS 2100: Data Structures & Algorithms 1

Classes and Enums (& How to use the Java API)

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Classes

• What does “ public class ______ ” actually mean?

3

• Classes define objects, the building blocks (or blueprints) of your program

• A class describes a data type!

 It lists a set of attributes (fields), and actions/behaviors (methods)

 State

 Variables, fields

 The values of the fields describe the state of each object in the class

 Behavior

 Methods

 What can this object do – the behavior of each object in the class

Classes

4

• Fields and methods may be:

 Static: available without an instance of the class

 Using static keyword

 Instance: called only as a method on an object in memory

• Methods may be:

 Accessor: read the state of the object in memory

 Mutator: change the state of the object in memory

• Variables can be (and usually are) other class objects!

• Classes provide encapsulation

Classes

5

Known as “getters” and “setters”
e.g. methods getName() and
setName(String newName)

Card / Deck Classes
Discussing Parts of a Class, including:

Constructors / Constructor Overloading

toString() and Getters/Setters

6

Writing Classes

• For example…

 Suppose I’d like to write code for playing card games.

 It would be nice to have variables for type Card, Deck, etc. to make this easier

 Card, Deck,etc. are *not* native / built-in to Java. We have to create them ourselves.

 Creating classes allows us to create our own Objects (that is, Data Types!)

7

Example Class: Playing Cards
(Card Class / Card.java)

8

E
xa

m
pl

e
C

la
ss

:
P

la
yi

ng
 C

ar
ds

(C

ar
d

C
la

ss
 /

C
ar

d.
ja

va
)

9

Constructor

• A Java constructor is special method that is called when an object is instantiated. In
other words, when you use the new keyword.

• A Java class constructor initializes instances (newly created objects) of that class.

• A constructor

 creates space in memory (on the heap)

 initializes all the fields of the object that need initialization (passed in as
parameters)

 sets the reference in the variable

10

Constructor

public class MyClass {

private int number = 0;

public MyClass() {

}

public MyClass(int theNumber) {

this.number = theNumber;

}

}

• The first part of a Java constructor

declaration is an access modifier.

(Always “public” so can be used.)

• The second part of a Java constructor

declaration is the name of the class the

constructor belongs to. Using the class name

for the constructor signals to the Java

compiler that this is a constructor. Also

notice that the constructor has no return

type, like other methods have.

11

Constructor

public class MyClass {

private int number = 0;

public MyClass() {

}

public MyClass(int theNumber) {

this.number = theNumber;

}

}

• The third part of a Java constructor

declaration is a list of parameters the

constructor can take. The constructor

parameters are declared inside the

parentheses () after the class name part of

the constructor.

• The fourth part of a Java constructor

declaration is the body of the constructor.

The body of the constructor is defined inside

the curly brackets { } after the parameter list.

12

Constructor Overloading

public class MyClass {

private int number = 0;

public MyClass() {

}

public MyClass(int theNumber) {

this.number = theNumber;

}

}

• Constructor overloading

 Multiple constructors in a Java class

• A class can have multiple constructors, as

long as their signature (the parameters they

take) are not the same. You can define as

many constructors as you need (comes in

multiple versions).

13

Another Constructor example (Employee)

public class Employee {

public String firstName = null;

public String lastName = null;

public int birthYear = 0;

// constructor:

public Employee(String firstName, String lastName, int birthYear) {

this.firstName = firstName;

this.lastName = lastName;

this.birthYear = birthYear;

}

} 14

To signal to the Java compiler
that you mean the fields of the
Employee class (instance
variables) and not the method
parameters, put the this
keyword and a dot in front of
the field name. [CONVENTION]

How to print an Object? Use toString() method!

• The toString() method allows the programmer to specify how to print out an object.

• The toString() method returns the string representation of the object.

• String return type and takes in no parameters

• If you print any object, the Java compiler internally calls the toString() method on the

object. So overriding the toString() method, returns the desired output, it can be the state of
an object etc. depends on your implementation.

See code example:

15

// example in Point class (x- & y-coordinates)
// converts the object into a printable string
public String toString() {

return “(“ + this.x + “,” + this.y + “)”;
}

• Accessor (“getter”) returns the instance variable’s value (takes in no parameters).
Naming convention: get + name of variable

 Example: In a Point class, get the x-coordinate instance variable “x”
public double getX() {

return this.x;
}

• Mutator (“setter”) changes (or sets) the value of an instance variable (takes in one

parameter – the new value of the instance variable). Void return type!
Naming convention: set + name of variable

 Example: in a Circle class, set the “radius” instance variable to a new value
public void setRadius(double newRadius) {

this.radius = newRadius;
}

Getters and Setters

16

Accessors and Mutators (a.k.a. Getters and Setters)
Another example – Cat class

• Getters and setters provide ways to access and change class fields
 Supporting encapsulation, hiding how it is stored

public class Cat {
private String name;

public String getName() {
...

}
public void setName(String name) {

...
}

}

17

Naming convention:
* Getters:

- “get” followed by the field name

(e.g. getName())

[retrieve the value of the field]

* Setters:

- “set” followed by the field name

(e.g. setName())

[alter the value of the field]

Other examples of object-oriented design

• Using Arrays

 int[] arr = new int[5]; // new keyword

 arr.length; // Get the length of the array instance “arr”

• Using Strings

 s.equals(t); // Using String s, see if it equals String s

 s.toUppercase(); // return what the String s would look like if all
// the lowercase letters were uppercase

 s.charAt(5); //get the character at index 5 of String s

• The dot operator just means

“Using this instance, get this value, or perform this action.”

Instance vs. Class

• Consider these lines of code:

• String is the class

 It contains all the code for how a String works

 It lists all the fields that each String has

• s and t are instances of String

 While s and t have the same behavior and the same set of variables

 s and t have their own copy of the variables

 That is, the “contents” of String s are separate from String t
• All instances of a class share the same behaviors, but have their own set of the class’s

variables

String s = new String("Hi"); // while you don't need to use the new keyword for String

String t = new String("Bye"); // Java will use it implicitly (that is, hidden from view)

Back to Card Class…

• Using the Card Class

20

Accessing Fields

• You can access fields directly, for example changing Card c1’s rank and suit:

21

Checking Equality

• You cannot use the == operator to successfully compare two Objects (reference types)

• You MUST use the .equals() method instead

 However…

 We must write our OWN equals() method in the Card Class:

22

Summary So Far

• Card Class looks pretty good so far

 Has a rank and suit, can check equality, and can print

• Next improvements:

 The suit can be ANY String (e.g., “BLAHBLAH”)

 Rank can be any integer (e.g., -168)

• We can prevent our class variables from being assigned incorrect values in a couple of

ways

 Enums: Useful when a variable has a small, finite number of possible values (e.g., suit)

23

Enums

• Enum is short for "enumerations", which means "specifically listed".

• An enum is a special "class" that represents a group of constants (unchangeable variables)

• We can use an enum for the suit of a Card:

24

Changes to Card Class after using the enum

25

Equality of Enums

• You can technically use == or .equals() though == is null safe and often preferred. WHY?

 Because there is only one instance of each enum constant, it is permissible to use the ==
operator in place of the equals method when comparing two object references if it is
known that at least one of them refers to an enum constant. (The equals method in Enum
is a final method that merely invokes super.equals on its argument and returns the result,
thus performing an identity comparison (calling .equals in Object class).)

26

Reference: https://docs.oracle.com/javase/specs/jls/se9/html/jls-8.html#jls-8.9

Summary So Far (continued)

• Enum is just a variable type that can take on a specified set of values. Otherwise, acts like

any other variable.

• Now suit can only be one of the four proper suits.

• What about rank?

• We want it to be an int so we can compare it easily with other card ranks (can do this with

enums, but a bit of a pain…)

• Another option is to use getters / setters, so let's see an example

27

Protecting our Fields

• Problem:

 We don't want other programmers messing with the fields of our Card class and changing
the values to unexpected things or illegal things (e.g., rank = -168)

• Solution:

 Make the fields have private scope, then no one can mess with them.

 Fields are set initially in the constructor only, can't be accessed afterwards

 Provide methods to access and/or set the fields if necessary.

28

Access Specifiers / Visibility Modifiers

• Both methods and attributes/variables have access specifiers / visibility modifiers

(sometimes discussed in the context of “scope”)

• public: Anybody can access the field/method. Implied public if not specified

• private: Can only access from within the class definition

• protected: Can access from within same package or inheritance line

 We won’t use this for a little while 29

Yes Yes Yes Yes

Yes Yes Yes No

Yes No No No

Updating Card Class

public class Card {

/* An Enum is a variable type that has a finite set of values
* Let’s use one for the suit of a Card
*/
public enum Suit {

Hearts, Diamonds, Spades, Clubs;
}

// Make class variables/fields *private*
private int rank; //1 (Ace) through 13 (King)
private Suit suit; //"Spades", "Hearts", "Clubs", "Diamonds"

/* Default constructor. Ace of Spades is default card */
public Card() {

this.rank = 1;
this.suit = Suit.Spades;

} 30

/*
* Constructor. Allows you to set the cards data when
* creating it. This is called overloading a method
*/

public Card(int rank, Suit suit) {
this.setRank(rank);
setSuit(suit);

}
// GETTERS AND SETTERS:
public int getRank() { return this.rank; }
public Suit getSuit() { return this.suit; }

private void setRank(int newRank) {
/* Ignore if trying to set to illegal value */
if(newRank < 1 || newRank > 13) return;

/* Otherwise, set it */
this.rank = newRank;

}
private void setSuit(Suit newSuit) {

/* No stress, enum already must have valid value */
this.suit = newSuit;

}
/* Other stuff here... */

Updating Card Class

31

Summary

• Getters and Setters let us have control over how much other programmers can alter the

fields in our class

• Maybe we don't want to be able to change a Card's suit and rank once it is instantiated

 Solution: Remove the setters from the class

 Now programmers can see the variables (through the getters) but not change them.

32

Deck Class
We’ll check out a more advanced Class next!

(Code posted along with Card Class)

33

JVM and Java API
JVM=Java Virtual Machine

34

Java vs C++

• The Java Compiler converts Java source code into Java ByteCode.

• Java ByteCode is simulated on the Java Virtual Machine, which executes on the

Computer

35

Using the Java API

• Documentation of Java classes, methods, etc.

 VERY useful for discovering what functionality already exists in Java and how to use it.

• Some examples:

 Object: https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

 Scanner: https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

 String: https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

 ArrayList: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

36

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

