
CS 2100: Data Structures & Algorithms 1

Methods and Parameters

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Reminder: Java is Object Oriented

• Everything in Java is an Object

 Objects have state and behavior

 State: properties (fields, variables) of an object

 Behavior: methods (functions) of an object

 Example: A Cat object could be asked:

 How many legs do you have?

 What is your name?

 Take a nap!

 Play with yarn!

In object-oriented
programming a “function”
is called a “method”
(similar meaning)

3

Basics of Methods

4

Brief Overview of Methods

• In Java, any code you write MUST be within a class

 More on classes, what they are, etc. in an up-coming lecture!

• Java methods behave more or less like methods in other languages:

 Can take parameters

 Have return values

• Methods in Java are associated with a single class definition

5

• There are no nested methods in a Java program. Each method sits inside the class. Order doesn’t matter!

public class BasicMethods {

public static void main(String[] args) {

// declare and initialize two int variables:

int a = 5;

int b = 7;

System.out.println("The sum is: " + add(a,b)); // call add() method

}

public static int add(int x, int y) {

return x + y; // add the two numbers and return the result

}

}

Reminder: Layout of the Class “BasicFunctions”

6

Methods

• Methods are functions written inside of a class

public class Cat {

int numLegs = 4; // field (variable)

String name = “Ginger”; // field (variable)

public void takeNap(arg) { // method header

…stuff…

}

…

• Method headers are comprised of the

access specifier, return type, name and argument(s)

7

A Simple Method

8

Some More Notes On Methods

• Scope

 Public: Anyone can invoke this method

 Private: Method can only be invoked from within this class

 Protected: Method can be invoked by inheriting classes and ones in the same package

 More on this later...

• Static

 Basically means the class only has one shared instance of this method (Again, more on this later...)

• Return value

 Can be void if no return necessary, otherwise methods MUST contain a return statement

• Parameters

 Can pass as many parameters as you want, but must declare the types!
9

Method Headers / Overloading Methods

• Methods may have the SAME NAME within a class, but not the same exact header!

• Methods with the same name must have different arguments

 Java compiler can distinguish methods by arguments

 Number of arguments

 Data type of arguments

 Position (order) of arguments

 This technique is called method OVERLOADING

10

Method Overloading Example

11

// 1: Overloaded sum(). This sum takes two int parameters
public static int sum(int x, int y) {

return (x + y);
}

// 2: Overloaded sum(). This sum takes three int parameters
public static int sum(int x, int y, int z) {

return (x + y + z);
}

// 3: Overloaded sum(). This sum takes two double parameters
public static double sum(double x, double y) {

return (x + y);
} Which method is called? System.out.println(sum(4, 18));

Parameter Passing
Method Arguments

12

Reminder: Formal vs. Actual Parameters

public class SimpleMethod {

public static void main(String[] args) {
int a = 5; // declare and initialize two int variables: a and b
int b = 7;
System.out.println("The sum is: " + sum(a,b)); // actual parameters

}

public static int sum(int x, int y) { // formal parameters
return x + y; // add the two numbers and return the result

}
}

13

Method Arguments

• Java is pass-by-value always

 Done for safety as well as efficiency.

 The value on the stack is copied into the new method’s parameter.

 This means that a copy of the actual parameter is made into the formal parameter, and
the method operates on the copy of that.

• Can produce surprising results – be mindful!

 Primitive variables have their values copied.

 Reference variables have their “pointers” (references) copied: both will point to the same
object!

14

Parameter Passing Examples: SWAP

public static void swap(int num1, int num2){
int temp = num1;
num1 = num2;
num2 = temp;

}
public static void main(String args[]) {

int x1 = 5; int x2 = 7;
swap(x1,x2); // <== Code is here
System.out.println("After: x1: " + x1 + " x2: " + x2);

}

15

Parameter Passing Examples: SWAP

public static void swap(int num1, int num2){
int temp = num1; // <== Code is here
num1 = num2;
num2 = temp;

}
public static void main(String args[]) {

int x1 = 5; int x2 = 7;
swap(x1,x2);
System.out.println("After: x1: " + x1 + " x2: " + x2);

}

16

Parameter Passing Examples: SWAP

public static void swap(int num1, int num2){
int temp = num1; // Line 1
num1 = num2;
num2 = temp; // <== Code is here (Line 3)

}
public static void main(String args[]) {

int x1 = 5; int x2 = 7;
swap(x1,x2);
System.out.println("After: x1: " + x1 + " x2: " + x2);

}

17

@ Line 1

@ Line 3

The swap does happen locally inside

of the swap() method. num1 holds the

value of num2, and num2 holds the

value of num1.

Parameter Passing Examples: SWAP

public static void swap(int num1, int num2){
int temp = num1;
num1 = num2;
num2 = temp;

}
public static void main(String args[]) {

int x1 = 5; int x2 = 7;
swap(x1,x2); // <== Code RETURNS here
System.out.println("After: x1: " + x1 + " x2: " + x2);

}

18
Output:

After: x1: 5 x2: 7
Explanation:

We made a copy of the values

Original x1 and x2 remained

unchanged!

Swapping Objects (e.g., REFERENCES)

• Be careful when passing a reference type by value!

 Will the following work?

public static void swap(Point p1, Point p2) {

Point temp = p1;

p1 = p2;

p2 = temp;

}

public static void main(String args[]) {

Point x1 = new Point(1,2); Point x2 = new Point(5,6);

swap(x1,x2);

}

19

Swapping Objects (e.g., REFERENCES)

20

Swapping Objects (e.g., REFERENCES)

21

Swapping Objects (e.g., REFERENCES)

• At the end of it all, x1 still points to (1,2) and x2 still points to (5,6).

• Why? We made a copy of the pointers (references) p1 and p2 and swapped them.

22

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone(); //Deep Copy
p1.x = p2.x; p1.y = p2.y;
p2.x = temp.x; p2.y = temp.y;

}

public static void main(String args[]) {
Point x1 = new Point(1,2); Point x2 = new Point(5,6);
swap(x1,x2);

}

23

About to invoke swap() method

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone(); //Deep Copy
p1.x = p2.x; p1.y = p2.y;
p2.x = temp.x; p2.y = temp.y;

}

24

Executing the swap() method

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone(); // <== This line executed
p1.x = p2.x; p1.y = p2.y;
p2.x = temp.x; p2.y = temp.y;

}

25

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone();
p1.x = p2.x; p1.y = p2.y; // <== This line executed
p2.x = temp.x; p2.y = temp.y;

}

26

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone();
p1.x = p2.x; p1.y = p2.y;
p2.x = temp.x; p2.y = temp.y; // <== This line executed

}

27

Another Example! Swapping Point Objects

• Now, swap() has returned.

• What does x1 and x2 in main() look like?

28

Used to be the following:

Parameters Summary

• When methods are called, a copy of the actual parameter is made into the
formal parameter

• For primitives, a copy of the data itself

• For references, a copy of the memory address

• Be careful with references

• Reassigning the reference will not change the actual parameter, but
altering what the reference points to will.
This is an important distinction!

29

A Note About main() Method Testing…

30

Testing in main() method

• Many classes do not have or need a main() method

 A Java Class is perfectly complete without a main() method

• The main() method is used when you want to do “stuff”

• You can utilize the main method to write tests for the other methods in the class

→ call methods, give inputs, observe outputs

→ use System.out.println() statements

31

