
CS 2100: Data Structures & Algorithms 1

Methods and Parameters

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Reminder: Java is Object Oriented

• Everything in Java is an Object

 Objects have state and behavior

 State: properties (fields, variables) of an object

 Behavior: methods (functions) of an object

 Example: A Cat object could be asked:

 How many legs do you have?

 What is your name?

 Take a nap!

 Play with yarn!

In object-oriented
programming a “function”
is called a “method”
(similar meaning)

3

Basics of Methods

4

Brief Overview of Methods

• In Java, any code you write MUST be within a class

 More on classes, what they are, etc. in an up-coming lecture!

• Java methods behave more or less like methods in other languages:

 Can take parameters

 Have return values

• Methods in Java are associated with a single class definition

5

• There are no nested methods in a Java program. Each method sits inside the class. Order doesn’t matter!

public class BasicMethods {

public static void main(String[] args) {

// declare and initialize two int variables:

int a = 5;

int b = 7;

System.out.println("The sum is: " + add(a,b)); // call add() method

}

public static int add(int x, int y) {

return x + y; // add the two numbers and return the result

}

}

Reminder: Layout of the Class “BasicFunctions”

6

Methods

• Methods are functions written inside of a class

public class Cat {

int numLegs = 4; // field (variable)

String name = “Ginger”; // field (variable)

public void takeNap(arg) { // method header

…stuff…

}

…

• Method headers are comprised of the

access specifier, return type, name and argument(s)

7

A Simple Method

8

Some More Notes On Methods

• Scope

 Public: Anyone can invoke this method

 Private: Method can only be invoked from within this class

 Protected: Method can be invoked by inheriting classes and ones in the same package

 More on this later...

• Static

 Basically means the class only has one shared instance of this method (Again, more on this later...)

• Return value

 Can be void if no return necessary, otherwise methods MUST contain a return statement

• Parameters

 Can pass as many parameters as you want, but must declare the types!
9

Method Headers / Overloading Methods

• Methods may have the SAME NAME within a class, but not the same exact header!

• Methods with the same name must have different arguments

 Java compiler can distinguish methods by arguments

 Number of arguments

 Data type of arguments

 Position (order) of arguments

 This technique is called method OVERLOADING

10

Method Overloading Example

11

// 1: Overloaded sum(). This sum takes two int parameters
public static int sum(int x, int y) {

return (x + y);
}

// 2: Overloaded sum(). This sum takes three int parameters
public static int sum(int x, int y, int z) {

return (x + y + z);
}

// 3: Overloaded sum(). This sum takes two double parameters
public static double sum(double x, double y) {

return (x + y);
} Which method is called? System.out.println(sum(4, 18));

Parameter Passing
Method Arguments

12

Reminder: Formal vs. Actual Parameters

public class SimpleMethod {

public static void main(String[] args) {
int a = 5; // declare and initialize two int variables: a and b
int b = 7;
System.out.println("The sum is: " + sum(a,b)); // actual parameters

}

public static int sum(int x, int y) { // formal parameters
return x + y; // add the two numbers and return the result

}
}

13

Method Arguments

• Java is pass-by-value always

 Done for safety as well as efficiency.

 The value on the stack is copied into the new method’s parameter.

 This means that a copy of the actual parameter is made into the formal parameter, and
the method operates on the copy of that.

• Can produce surprising results – be mindful!

 Primitive variables have their values copied.

 Reference variables have their “pointers” (references) copied: both will point to the same
object!

14

Parameter Passing Examples: SWAP

public static void swap(int num1, int num2){
int temp = num1;
num1 = num2;
num2 = temp;

}
public static void main(String args[]) {

int x1 = 5; int x2 = 7;
swap(x1,x2); // <== Code is here
System.out.println("After: x1: " + x1 + " x2: " + x2);

}

15

Parameter Passing Examples: SWAP

public static void swap(int num1, int num2){
int temp = num1; // <== Code is here
num1 = num2;
num2 = temp;

}
public static void main(String args[]) {

int x1 = 5; int x2 = 7;
swap(x1,x2);
System.out.println("After: x1: " + x1 + " x2: " + x2);

}

16

Parameter Passing Examples: SWAP

public static void swap(int num1, int num2){
int temp = num1; // Line 1
num1 = num2;
num2 = temp; // <== Code is here (Line 3)

}
public static void main(String args[]) {

int x1 = 5; int x2 = 7;
swap(x1,x2);
System.out.println("After: x1: " + x1 + " x2: " + x2);

}

17

@ Line 1

@ Line 3

The swap does happen locally inside

of the swap() method. num1 holds the

value of num2, and num2 holds the

value of num1.

Parameter Passing Examples: SWAP

public static void swap(int num1, int num2){
int temp = num1;
num1 = num2;
num2 = temp;

}
public static void main(String args[]) {

int x1 = 5; int x2 = 7;
swap(x1,x2); // <== Code RETURNS here
System.out.println("After: x1: " + x1 + " x2: " + x2);

}

18
Output:

After: x1: 5 x2: 7
Explanation:

We made a copy of the values

Original x1 and x2 remained

unchanged!

Swapping Objects (e.g., REFERENCES)

• Be careful when passing a reference type by value!

 Will the following work?

public static void swap(Point p1, Point p2) {

Point temp = p1;

p1 = p2;

p2 = temp;

}

public static void main(String args[]) {

Point x1 = new Point(1,2); Point x2 = new Point(5,6);

swap(x1,x2);

}

19

Swapping Objects (e.g., REFERENCES)

20

Swapping Objects (e.g., REFERENCES)

21

Swapping Objects (e.g., REFERENCES)

• At the end of it all, x1 still points to (1,2) and x2 still points to (5,6).

• Why? We made a copy of the pointers (references) p1 and p2 and swapped them.

22

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone(); //Deep Copy
p1.x = p2.x; p1.y = p2.y;
p2.x = temp.x; p2.y = temp.y;

}

public static void main(String args[]) {
Point x1 = new Point(1,2); Point x2 = new Point(5,6);
swap(x1,x2);

}

23

About to invoke swap() method

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone(); //Deep Copy
p1.x = p2.x; p1.y = p2.y;
p2.x = temp.x; p2.y = temp.y;

}

24

Executing the swap() method

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone(); // <== This line executed
p1.x = p2.x; p1.y = p2.y;
p2.x = temp.x; p2.y = temp.y;

}

25

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone();
p1.x = p2.x; p1.y = p2.y; // <== This line executed
p2.x = temp.x; p2.y = temp.y;

}

26

Another Example! Swapping Point Objects

public static void swap(Point p1, Point p2) {
Point temp = (Point) p1.clone();
p1.x = p2.x; p1.y = p2.y;
p2.x = temp.x; p2.y = temp.y; // <== This line executed

}

27

Another Example! Swapping Point Objects

• Now, swap() has returned.

• What does x1 and x2 in main() look like?

28

Used to be the following:

Parameters Summary

• When methods are called, a copy of the actual parameter is made into the
formal parameter

• For primitives, a copy of the data itself

• For references, a copy of the memory address

• Be careful with references

• Reassigning the reference will not change the actual parameter, but
altering what the reference points to will.
This is an important distinction!

29

A Note About main() Method Testing…

30

Testing in main() method

• Many classes do not have or need a main() method

 A Java Class is perfectly complete without a main() method

• The main() method is used when you want to do “stuff”

• You can utilize the main method to write tests for the other methods in the class

→ call methods, give inputs, observe outputs

→ use System.out.println() statements

31

