
CS 2100: Data Structures & Algorithms 1

References

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Primitives
vs. Objects

Reference Type Primitive Type

It is not pre-defined except the
String. (Usually defined from
classes.)

It is pre-defined in Java.

All reference type begins with
Uppercase letter.

All primitive type begins with a
lowercase letter.

Non-primitive types have all the
same size.

The size of a primitive type
depends on the data type.

It is used to invoke or call
methods.

We cannot invoke the method
with a primitive type.

It can be null. It cannot be null. It always has
value.

Examples of reference data types
are class, Arrays, String,
Interface, etc.

Examples of primitive data types
are int, float, double, long, etc.

JVM allocates 8 bytes for each
reference variable, by default.

Its size depends on the data
type.

MUST be compared with special
.equals() method.

May be compared with double
equal sign “==”

Primitives vs. Objects

• Primitives in Java (e.g., int, double, etc.)

 Store a value directly in memory

 Variable refers directly to that memory address

 Creates space on the stack (compile time)

• Objects in Java are stored as References

 Stores memory address of the variable

 Uses space on the heap (run time)

 Makes parameter passing and equality tricky (examples coming up next class!)

4

Primitive Types: (“non-reference types”)
int x = 4;
int y = x;

Actual values are stored in memory.

(Recall) Primitive Data Types

MEMORY

1000
4  x

2000
4  y

5

Primitive type:
(Built-in to Java)

• A “box” or chunk of memory

holding the data itself

 Ex: int, double, …

Reference (class) type:

• All objects defined from classes

• The object “refers to” or “points to”

the chunk of memory that actually

holds the data

Reference type (cont’d):

• An object-variable must be made to

refer to a chunk

 Create chunks with “new” (which

calls a constructor)

 Use assignment (“=”)

 null value for an object-variable: not
pointing to anything

• Example:
MyClass obj1 = new MyClass();

6

Reference Types

MEMORY

1000
5000  Obj1

2000
5000  Obj2

…

5000
Object “Bob”

Reference Types: (more complicated declaration)
MyClass obj1 = new MyClass(“Bob”);
MyClass obj2 = obj1;

Object 1 and Object 2 are referencing the class object. Their memory locations consist

of an address (5000) to another memory location where the object is located.

7

Understanding the reference type declaration…

Declaration:

• A variable declaration associates a variable name with an object type (data type)

Instantiation:

• The “new” keyword is a Java operator that creates the object

Initialization:

• The “new” operator is followed by a call to a constructor, which initializes the new object

(A constructor is a special kind of method in the object class)

Example (with the pieces color coded):

Point originOne

8

Understanding the reference type declaration…

Declaration:

• A variable declaration associates a variable name with an object type (data type)

Instantiation:

• The “new” keyword is a Java operator that creates the object

Initialization:

• The “new” operator is followed by a call to a constructor, which initializes the new object

(A constructor is a special kind of method in the object class)

Example (with the pieces color coded):

Point originOne = new

9

Understanding the reference type declaration…

Declaration:

• A variable declaration associates a variable name with an object type (data type)

Instantiation:

• The “new” keyword is a Java operator that creates the object

Initialization:

• The “new” operator is followed by a call to a constructor, which initializes the new object

(A constructor is a special kind of method in the object class)

Example (with the pieces color coded):

Point originOne = new Point(23, 45); // (x and y coordinates)

10

MEMORY

1000
5000  bob

2000 Holds an address

(a memory location)

…

5000
Student object “Bob”

Where the object is

actually stored

Reference Types

• Student bob
 Is bob a student? No!

 Reference to student, not a REAL student object yet

• Student bob = new Student(“Bob”);
 Is bob a student (now)? Yes!

• Student(“Bob”)
 The method

Is called at the time the

object is created

11

MEMORY

1000
5000  bob

2000
6000  jane

…

5000
Object “Bob”

6000
Object “Jane”

Reference Types

• Before:
Student bob = new Student(“Bob”);
Student jane = bob;

• Now:
Student bob = new Student(“Bob”);
Student jane = new Student(“Jane”);

jane
jane

MEMORY

1000
5000  bob

2000
5000  jane

…

5000
Object “Bob”

12Bob Jane

Examples

13

Reference Examples

/* This is a primative */
int x = 127;

/* This is a reference */
String s = new String ("Hello");

/* Arrays are Reference Types */

int[] arr = {4, 6, 2};

14

Using == vs .equals() on References

GregorianCalendar date1 = new GregorianCalendar(2018, 6, 14);
GregorianCalendar date2 = new GregorianCalendar(2018, 6, 14);
/* Is date1 “==” to date2? */
if(date1 == date2) {

System.out.println("They are the same date!");
}

/* date1 and date2 are NOT == */

/* Use .equals() to compare references */

if(date1.equals(date2)) {

System.out.println("They are the same!");

} /* It will print “They are the same!” */

15

Assignment of References

Date date1 = new Date(2018, 6, 14);

Date date2 = new Date(2018, 7, 18);

// Assignment

date1 = date2;

System.out.println(date1);

16

Shared References

• Now if you executed something like: date1.setYear(2017);

• Note that BOTH date1 and date2 are changed!

• This is because date1 and date2 are aliases to one another. They’re both referred to the

SAME memory location of the actual date.

17

If we print date1 or
date2 the output will
be exactly the same!

Shared References

• Now if you decouple date1 and date2 by typing something like:
date2 = new Date(2013, 10, 28); // instantiating & initializing date2 (own object)

• We used to have (from last slide):

• Now we have:

18

EXTRA Slide //
Clarification on Integer Division and Casting

• Casting and Integer Division

 Dividing two integers will produce an integer (“integer division”)

 Example: int m = 2 / 5;

 value of m = 0

 Often this is not the value we want (or was expecting)!

 To resolve this issue, we can cast explicitly (one or both operands):

 Example: System.out.println((float) 2 / 5);

 value of result is 0.4

19

