
CS 2100: Data Structures & Algorithms 1

Concurrency
Race Conditions and Synchronization

Avoiding Deadlocks
Blocking Queue

Dr. Nada Basit // b a s i t @ v i r g i n i a . e d u

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

• Final Exam:






• Make-up Exam:













Announcements

3

new

The Final Exam – Saturday, May 7 (Make-up: May 8)

➢

➢

➢

➢

➢

➢

➢

➢ ☺

➢

➢

➢

➢

➢

➢

➢

➢

➢

➢

➢ 4

From Last Time… Try/Catch/Finally

• Yes, but Java’s concurrency libraries throw a lot of exceptions, so you will often need to
use try/catch statements to handle those.

• Remember…

• Now it will be:

5

Sleep Method throws an InterruptedException

• The sleep method throws an InterruptedException when a sleeping thread is

interrupted

6

Eclipse DEMO
MyRunnableWithInterrupt.java – To illustrate try/catch, interrupt() and sleep()

7

8

Eclipse DEMO
WordCount.java && WordCountRunnable.java – Counting words in parallel

9

Race Conditions and
Synchronization
(Also an understanding of shared resources)

10

Race Conditions

• Consider the following program that contains two threads:

 Variable int amount in an account

 Thread 1: repeatedly deposits $100 into the account (n times)

 Thread 2: repeatedly withdraws $100 into the account (n times)

• What would happen? We should end up with $0.00, right??

11

Eclipse DEMO
Watch the following demos presented in class:
Bank Example: [Thread Example 4 – Bank]

BankAccount.java
BankAccountThreadRunner.java
DepositRunnable.java
WithdrawRunnable.java

12

Corrupting the Contents
of the balance Variable

13

Results?

• Did we get a balance of 0.0? No…!

• Why? This is called a race condition!

14

Race Conditions

• Occurs if the effect of multiple threads on shared data depends on the order in which they
are scheduled

 i.e., the threads are racing, and the output depends on which one is faster

• It is possible for a thread to reach the end of its time slice in the middle of a statement

• It may evaluate the right-hand side of an equation but not be able to store the result until its
next turn:

public void deposit(double amount)
{

System.out.print("Depositing " + amount);
double newBalance = balance + amount;
System.out.println(", new balance is " + newBalance);
balance = newBalance;

}

• Race condition can still occur:

balance = the right-hand-side value does not get assigned
15

Race Conditions – Why Does it Happen??

• Race conditions can occur when there are shared resources: variables or objects that

multiple threads are interacting with at once.

• This code:

• Is turned into (by the compiler) something like this:

• This means that a thread may have calculated that the new balance is 100+100 = 200

BEFORE storing that result (200) back into the variable balance.

• If the thread is interrupted at that point, then bad things could happen.

16

What We Hope Happens //What Might Happen Instead

17

Locks
To synchronize object access, we use locks!

18

Fixing Race Conditions: Use Locks!

• To solve problems such as the one just seen (race condition), use a lock object

• Lock object: used to control threads that manipulate shared resources

 It is a resource that only one thread is allowed to “hold” at a single time

 Forces threads to “take turns”

 But also usually slows execution down because one thread may have to wait on the
other

• Many types of lock are out there, we will use Java’s ReentrantLock (most commonly used

lock class)

 Inherits from the Lock interface

19

Locks

• When there is a shared resource, we usually instantiate a lock:

20

Locks

• Code that manipulates a shared resource is surrounded by calls to lock and unlock.

• So, when we use the shared resource, we grab the lock first:

• If lock() is called, and another thread has the lock, this thread will wait.

21

Locks

• … But there is a problem!

• If code between calls to lock and unlock throws an exception, call to unlock never happens!

• To resolve this, use try/catch instead – place a call to unlock into the finally clause:

22

Final Deposit Code

• … and similar code for the withdraw method!
23

Final Notes on Locks

• When a thread calls lock, in owns the lock until unlock is called

• Another thread that calls lock will be deactivated by the scheduler so that it "waits" for the

lock.

 Occasionally the thread scheduler reactivates a thread so it can try to acquire the lock
(see if the lock is now available)

• Eventually (hopefully) the waiting thread can acquire the lock

24

Eclipse DEMO
Watch the following demos presented in class:
Bank Example: [Thread Example 5 – Bank Sync]

BankAccount.java
BankAccountThreadRunner.java
DepositRunnable.java
WithdrawRunnable.java

25

Avoiding Deadlocks

26

Avoiding Deadlocks

Let’s try to model the real world; if you go to a bank and try to withdraw
money, you can only withdraw an amount less than or equal to the size of
your balance.

If your balance is $50, you cannot withdraw $100! (You don’t have a
“negative” balance!)

Let’s see how to make our code mimic this realistic real-world behavior

27

Deadlocks

• A Deadlock is a problem that occurs when no thread can proceed because each is waiting

on another.

 e.g., thread A is waiting on B which is waiting on C which is waiting on A

 No progress is made, and the program freezes forever.

28

Banking Example

• How can we wait for the balance to grow?

 We cannot just wait (or sleep), because the
thread owns the balanceChangeLock!

 In particular, no other thread can successfully
execute deposit

 Other threads will call deposit, but will be
blocked until withdraw exits

 But withdraw doesn’t exit until it has funds
available (withdraw will never finish because
deposit cannot happen…)

 DEADLOCK !!

29

Overcoming Deadlocks: Condition Objects

• To overcome deadlocks, use Java’s condition object.

• Condition objects allow a thread to temporarily release a lock until a

condition is met, and then reacquire the lock

• This is done autonomously, so no race conditions within this acquisition step

• Each condition object belongs to a specific lock object

30

Condition Objects

31

Condition Objects

32

As long as the test

is not fulfilled, call

await on the

condition object

• Calling await makes the current thread wait and allows other threads to acquire the lock

object

• To unblock the waiting thread, another thread must execute signalAll
(on the same condition object)

• signalAll unblocks all threads waiting on the condition

 This lets other threads know that the condition might now be met for the waiting thread.
Gives control back to waiting threads

Condition Objects

33

Signaling

34

Results?

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
...
Withdrawing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0

Notice how the balance doesn’t drop below zero! This is a more realistic situation and we can

achieve this by using locks and condition objects

35

Eclipse DEMO
Watch the following demos presented in class:
Bank Example: [Thread Example 6 – Bank Deadlock]

BankAccount.java
BankAccountThreadRunner.java
DepositRunnable.java
WithdrawRunnable.java

36

Blocking Queue
Using concurrency: Locks and conditions

37

Concurrent Queue

• Suppose we have a linked-list backed queue and we want to be able to access the queue

with multiple threads.

• Doesn't seem too bad, should be able to enqueue at front at same time as dequeuing at back.

• This is your assignment this week!

38

Blocking Concurrent Queue

• Enqueue - Lock the queue, then add the element

 Once an element is added, then signalAll to waiting dequeue threads (why? See below)

• Dequeue - Lock the queue, then delete the element

 If no nodes to delete, then await a signal that something (an enqueue thread) has been
added

 This is the "blocking" part because the queue will wait until it can delete something

• Note that there are more efficient ways to implement this, but this is sufficient for our

assignment.

39

