*
+

[UNIVERSITY
I\/IRGINIA

CS 2100: Data Structures & Algorithms 1

Concurrency

Race Conditions and Synchronization

Avoiding Deadlocks
Blocking Queue

Dr. Nada Basit // basit@virginia.edu
Spring 2022

Friendly Reminders

—_— .

- The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). | know it is a lot to ask, and it is

voluntary, but | appreciate your understanding.

- If you forget your mask (or mask is lost/broken), | have a few available
- Just come up to me at the start of class and ask!

- No eating or drinking in the classroom, please
- Our lectures will be recorded (see Collab) — please allow 24-48 hrs to post

- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©

Announcements

- Final Exam:
* Date: Saturday, May 7, 2022

* Time/Duration: 7:00pm - 9:00pm E
* Location: Section 002: RDL G008

ours)
[Section 001: McLeod Hall 1020]

- Make-up Exam: [Email me if you haven’t already]
* If you have a conflict with the following courses, email me:

- APMA 3100

- APMA 3140

- ECON 2020 (sections 001 and 002 only)
* Make-up Date: Sunday, May 8§, 2022

* At this time we do not have a time or a location; however, given there are no officially held final
exams on this day (May 8) we anticipate the chosen time will suit your schedule

The Final Exam — Saturday, May 77 (Make-up: May 8)

»Mode: Taken in-person » Location of Quizzes: ONLINE AS BEFORE.
Explicit instructions will be given on the day!

> Students with accommodations with SDAC:

»Duration: two (2) hours

»Policies: > Please see email that I have sent to you.
» Closed-book / Closed-notes »If you choose to book a testing
> Closed-Google/Internet (except to access appointment with SDAC, please do so as
the quiz itself) soon as possible!
> Closed-Eclipse/other IDE »You will have your extended time

accommodations
/> What to bring with you to the final exam: N
> Fully charged laptop (+ charging cable)

» Closed-friend/any other person
> Closed... everything ©

» Can retake as many quizzes as you want

»Pen/pencil to write on scratch paper

>
The work you do must represent your (not necessary, only if you want)

individual effort, and involve no outside
assistance from any one or any resource 0 »Student ID card)

From Last Time... Try/Catch/Finally

- Yes, but Java’s concurrency libraries throw a lot of exceptions, so you will often need to
use try/catch statements to handle those.

public void run(){
. R[M[MB[R . for(int i=0; i<=REPETITIONS && [IThread.interrupted(); i++){

1
J

public void run(){
try{

. N()w ”. WH_I_ B[for(int i=@; i<=REPETITIONS; i++){

sleep(1000)
1
i)

1
J

catch(Interruptedexception e){

1

)
finally{

1
J
1
J

Sleep Method throws an InterruptedException

- The sleep method throws an InterruptedException when a sleeping thread is
Interrupted

public void run(){
try{
for(int 1=0; 1<=REPETITIONS; i++){

sleep(1000)

catch(InterruptedException e){

1

)
finally{

1
J

)

Eclipse DEMO

MyRunnableWithInterrupt.java — To illustrate try/catch, interrupt() and sleep()

public void run() {
// What order will statements [1] to [4] be executed?
// Will all be executed?
try {
System.out.println("[1] Before thread goes to sleep”);
Thread.sleep(DELAY); // sleep for one second
System.out.println("[2] After thread sleeps for one second”);

}

catch (InterruptedException exception) {

// 1f thread is interrupted it will throw an "InterruptedException”
// and will be caught here

System.out.println(”[3] Inside catch -- thread was interrupted!");

}
System.out.println("[4] Outside of try-catch");

Eclipse DEMO

WordCount.java && WordCountRunnable.java — Counting words in parallel

Race Conditions and
Synchronization

(Alse an wndenstonding ey shavved tesowices)

Race Conditions

—_— .

- Consider the following program that contains two threads:
- Variable int amount in an account
- Thread 1: repeatedly deposits $100 into the account (n times)
- Thread 2: repeatedly withdraws $100 into the account (n times)

- What would happen? We should end up with $0.00, right??

EchPse DEMO

WATCH TUE FOLLOWING DEMOS PRESENTED IN GLASS:
Bank Example: [Thread Example 4 — Bank]

BankAccount.java
BankAccountThreadRunner.java
DepositRunnable.java
WithdrawRunnable.java

Deposit thread Withdraw thread

Corrupting the Contents
of the balance Variable

newBalance in deposit
method is 100

Print
. "Withdrawing..."
Deposit thread reaches g
the end of its time slice
newBalance =

balance - amount

Local variable
newBalance in withdraw

C method is —100
Print ", new

balance is..."

balance
1s now —100
balance =

newBalance

Print ", new
balance 1is..."

baTlance

is now 100
balance =

newBalance

Results?

—_— e ——

Withdrawing 100.0, new balance 1s 1100.0

Depositing 100.0Depositing 100.9, new balance is 1200.0
Withdrawing 100.0Depositing 100.0, new balance is 1300.0
Withdrawing 100.0, new balance is 1200.0

Depositing 100.0, new balance is 1300.0

Depositing 100.0, new balance is 1400.0

Withdrawing 100.0, new balance is 1300.0

, hew balance is 1200.0

Depositing 100.0, new balance is 1300.0

Withdrawing 100.0, new balance is 1200.0

- Did we get a balance of 0.0? No...!

- Why? This is called a race condition!

Race Conditions

—_— . —————

- Occurs If the effect of multiple threads on shared data depends on the order in which they
are scheduled

* 1.e., the threads are racing, and the output depends on which one is faster
- It is possible for a thread to reach the end of its time slice in the middle of a statement

- It may evaluate the right-hand side of an equation but not be able to store the result until its
next turn:

public void deposit(double amount)

{
System.out.print("Depositing " + amount);
double newBalance = balance + amount;
System.out.println(", new balance is " + newBalance);
balance = newBalance;

}

- Race condition can still occur:

balance = the right-hand-side value does not get assigned

Race Conditions — Why Does it Happen??

- Race conditions can occur when there are shared resources: variables or objects that
multiple threads are interacting with at once.

- This code: double newBalance = balance + amount;

- Is turned into (by the compiler) something like this:

mov rax, balance

mov rax, amount
mov balance, rax

- This means that a thread may have calculated that the new balance is 100+100 = 200
BEFORE storing that result (200) back into the variable balance.

- If the thread is interrupted at that point, then bad things could happen.

What We Hope Happens //What Might Happen Instead

‘Withdraw Balance ‘ Deposit

..................................

| balance=100

100

Dep = 100+100 = 200

200

| balance=200

200

100

| balance=200 ‘

‘Withdraw.

Balance ‘ Deposit

‘Withdraw‘ l Balance Deposit ‘

balance=100

balance: 100

balance: 100

set: 0

200

balance=200

‘Withd raw‘ ‘ Balance Deposit

7 ..::.h.\ﬂ.%. 7

&)

Fixing Race Conditions: Use Locks!

- To solve problems such as the one just seen (race condition), use a lock object

- Lock object: used to control threads that manipulate shared resources
- It 1s a resource that only one thread is allowed to “hold” at a single time
* Forces threads to “take turns”™

- But also usually slows execution down because one thread may have to wait on the
other

- Many types of lock are out there, we will use Java’s ReentrantLock (most commonly used
lock class)

- Inherits from the Lock interface

Locks

- e

- When there is a shared resource, we usually instantiate a lock:

public class BankAccount {
private double balance;

— private Lock balanceChangelock; // ** Add a lock **

/%%
Constructs a bank account with a zero balance
*/
public BankAccount(){
balance = 0;

— balanceChangeLock = new ReentrantLock(); // ** lock **
}

Locks

- Code that manipulates a shared resource is surrounded by calls to lock and unlock.

- S0, when we use the shared resource, we grab the lock first:

balanceChangelLock.lock();
double newBalance = balance + amount;

balanceChangelLock.unlock();

- If lock() Is called, and another thread has the lock, this thread will wait.

balanceChangelLock.lock();
double newBalance = balance + amount;

Locks balanceChangelLock.unlock();
—_— e ——

* ... But there is a problem!

- If code between calls to lock and unlock throws an exception, call to unlock never happens!

balanceChangelLock.lock();

double newBalance = balance + amount;
/* Exception thrown HERE - code afterwards does not get executed */

balanceChangelLock.unlock();

- To resolve this, use try/catch instead — place a call to unlock into the finally clause:

) bzlanceChangelock.lock();
try {
double newBalance = balance + amount;

/* Exception thrown HERE */
}
//catch { /* Stuff here */ }
finally {

) E— balanceChangelLock.unlock();
}

Final Deposit Code

—_— e ——

public void deposit(double amount){

balanceChangeLock.lock(); // ** lock! **
try

{

System.out.print("Depositing " + amount);
double newBalance = balance + amount;
System.out.println(”, new balance is
balance = newBalance;

+ newBalance);

}
finally
{
balanceChangeLock.unlock(); // ** unlock! **
}

}

- ... and similar code for the withdraw method!

Final Notes on Locks

-

- When a thread calls lock, in owns the lock until unlock is called

- Another thread that calls lock will be deactivated by the scheduler so that it "waits" for the
lock.

- Occasionally the thread scheduler reactivates a thread so it can try to acquire the lock
(see if the lock is now available)

- Eventually (hopefully) the waiting thread can acquire the lock

EchPse DEMO

WATCH THE FOLLOWING DEMOS PRESENTED IN CLASS:
Bank Example: [Thread Example 5 — Bank Sync]

BankAccount.java
BankAccountThreadRunner.java
DepositRunnable.java
WithdrawRunnable.java

Avoiding Deadlocks

Avoiding Deadlocks

- e

Let’s try to model the real world; if you go to a bank and try to withdraw
money, you can only withdraw an amount less than or equal to the size of
your balance.

If your balance is $50, you cannot withdraw $100! (You don’t have a
“negative” balance!)

Let’s see how to make our code mimic this realistic real-world behavior

Deadlocks

—_— .

{- A Deadlock is a problem that occurs when no thread can proceed because each Is waiting }
on another.

* e.g., thread A is waiting on B which is waiting on C which is waiting on A

- No progress is made, and the program freezes forever.
public void withdraw(double amount) {

balanceChangelLock.lock(); // lock!

try {
a condition needs to // Check condition:

be checked mmmmmmmmm) while (balance < amount) {
(an appropriate test) // WAIT FOR BALANCE TO GROW...

}

//... Rest of Withdraw Code ...
}
finally {

balanceChangelLock.unlock(); // unlock!
}

Banking Example

- How can we wait for the balance to grow?

- We cannot just wait (or sleep), because the public void withdraw(double amount) {
thread owns the balanceChangelock! balancechangeLock.lock(); // lock!
- In particular, no other thread can successfully try Ez ok o
: Chec condlitlion:
execute depOSIt_ _) while (balance < amount) {
- Other threads will call deposit, but will be // WAIT FOR BALANCE TO GROW...
blocked until withdraw exits ¥ ,
i . . //... Rest of Withdraw Code ...
- But withdraw doesn’t exit until it has funds }
available (withdraw will never finish because finally {
deposit cannot happen) balanceChangelLock.unlock(); // unlock!
)

Overcoming Deadlocks: Condition Objects

- To overcome deadlocks, use Java’s condition object.

- Condition objects allow a thread to temporarily release a lock until a
condition is met, and then reacquire the lock

- This iIs done autonomously, so no race conditions within this acquisition step

- Each condition object belongs to a specific lock object

Condition Objects

public class BankAccount {
private double balance;
private Lock balanceChangelock

Condition object given

/ a name that describes
the condition
s // lock

[**

> private Condition sufficientFundsCondition; // Add condition object

Constructs a bank account with a zero balance

*/
public BankAccount(){

balance = @;

condition object

balanceChangelock = new ReentrantLock(); // lock | belongs to a specific
// condition object assoclated with specific lock object

// lock object (balanceChangelLock)

» sufficientFundsCondition =

}

balanceChangelock.,newCondition();

Condition Objects

public void withdraw(double amount) throws InterruptedException {

As long as the test
is not fulfilled, call
await on the
condition object

balanceChangelLock.lock(); // lock!

the condition needs

try { e to be checked

while (balance < amount) {

// If balance is less than withdrawal amount... .

// Condition object calls "await"
sufficientFundstondition.await();“'7! await!
// Another thread can now acquire the lock object

}

the condition object
calls “await”

System.out.print("Withdrawing " + amount);

double newBalance = balance - amount;
System.out.println(”, new balance is " + newBalance);
balance = newBalance;

}
finally {

balanceChangeLock.unlock(); // unlock!
}

32

Condition Objects

—_— . —————

- Calling await makes the current thread wait and allows other threads to acquire the lock
object

- To unblock the waiting thread, another thread must execute signalAll
(on the same condition object)

sufficientFundsCondition.signalAll();

- signalAll unblocks all threads waliting on the condition

- This lets other threads know that the condition might now be met for the waiting thread.
Gives control back to waiting threads

Signaling

- e ——————
public void deposit(double amount){

balanceChangelLock.lock(); // lock!

try {

System.out.print("Depositing " + amount);

double newBalance = balance + amount;

System.out.println("”, new balance is " + newBalance);

balance = newBalance;

// Funds added to balance...

// Unblock other threads waiting on the condition by "signalAll"
3 D sufficientFundsCondition.signalAll();

L4

}
finally {

balanceChangelLock.unlock(); // unlock!
}

Results?

—_— e ——

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0

Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0

Withdrawing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is ©0.@

Notice how the balance doesn’t drop below zero! This 1s a more realistic situation and we can
achieve this by using locks and condition objects

EchPse DEMO

WATCH TUE FOLLOWING DEMOS PRESENTED IN GLASS:
Bank Example: [Thread Example 6 — Bank Deadlock]

BankAccount.java
BankAccountThreadRunner.java
DepositRunnable.java
WithdrawRunnable.java

Blocking Queue

USING CONGURRENGY: LOCKS AND CONDITIONS

Concurrent Queue

—_— .

- Suppose we have a linked-list backed queue and we want to be able to access the queue
with multiple threads.

- Doesn't seem too bad, should be able to enqueue at front at same time as dequeuing at back.

- This is your assignment this week!

Blocking Concurrent Queue

—_— e ——

- Engueue - Lock the queue, then add the element
- Once an element is added, then signal All to waiting dequeue threads (why? See below)

- Dequeue - Lock the queue, then delete the element

- If no nodes to delete, then await a signal that something (an enqueue thread) has been
added

- This is the "blocking" part because the queue will wait until it can delete something

- Note that there are more efficient ways to implement this, but this is sufficient for our
assignment.

