
CS 2100: Data Structures & Algorithms 1

Concurrency
Aside: Exception Handling

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Announcements

• Final Exam:






• Make-up Exam:













3

The Final Exam – Saturday, May 7 (Make-up: May 8)

➢

➢

➢

➢

➢

➢

➢

➢ ☺

➢

➢

➢

➢

➢

➢

➢

➢

➢

➢

➢ 4

An Aside:
Introduction to Exceptions
We need to talk about exceptions because when writing
multithreaded programs, these programs often throw
exceptions that need to be handled.

To understand this, we will discuss exceptions today!

5

Terminating Threads

• A thread terminates when the run() method is complete

• Or, you can call:

t.interrupt(); // notifies the tread that it should terminate

• Does not stop the thread (immediately), rather it just sets a boolean

 The run method should check for this interrupt periodically

6

Terminating Threads

• To suspend execution of a thread, you can call: sleep()
 If a thread is sleeping at the time it is interrupted… the thread is not awake to check
Thread.interrupted() condition!

 This is generally NOT a good setup to use

• To better understand how to proceed we have to detour and speak about EXCEPTIONS! 7

Motivation

• Problem: How do we deal with errors in code

 e.g., you divide a parameter by another parameter, what if the invoker gave you 0 as a
divisor?

 e.g., what do you do if a method tries to go off the end of an array

• Solution 1: Ignore the method call, or return a dummy value (null).

• Java Solution: Exceptions

8

Exceptions

• Exceptions are events that disrupt the intended program flow

• Exception is short for “exceptional events”

• All exceptions must be:

 Detected

 Handled
during coding to prevent halting
the program (with no explanation)

• In Java, exceptions are objects that

are created when an error or

problem has been detected

 E.g. accessing a null pointer
or going off the end of an array

9

Exceptions

• Java is Safe! By default, the Java approach to handling errors is to end the program

 Terminal error handling approach

• Aside: Resumptive error handling approach is pretty rare

java.lang.NullPointerException

at PhotographContainer.addPhoto(PhotographContainer.java:36)

at PhotoLibrary.main(PhotoLibrary.java:165)

10

Exception Handling and Defensive Driving!

• If you'd like to use a “buzzword” term, use “defensive programming.”

• “Defensive driving” is when you drive expecting people around you to be bad drivers, so

you pay attention to what they COULD do wrong, that way you're ready to deal with it

if/when it happens. “Defensive Programming” is the same idea!

• Defend yourself against bad coders/users! ☺

This photo by Author is licensed under CC BY
11

https://creativecommons.org/licenses/by/3.0/

Exception Handling - Throwing Exceptions

• Exception handling provides a flexible mechanism for passing control from the point of

error detection to a handler that can deal with the error.

• When you detect an error condition, throw an exception object to signal an exceptional

condition

Syntax Throwing
an Exception:

12

Exceptions

• When an exception is created, there are two ways to handle it:

 THROW: this means that the current method will NOT deal with the exception. The
exception is thrown to the method that invoked this one. Then, that method can either
throw or catch it.

 CATCH: This means that you deal with the exception right now. Crash the program, spit
out an error message, ignore the exception, etc.

• In the example below, Method 2 can either catch the exception or throw it to Method 1 to

deal with:

13

Example Exceptions

• Here are some exceptions that can be generated in Java

14

JVM Exceptions:
How the JVM handles errors during run-time

• When the JVM detects an exception (error), Java

 Creates an Exception (error) object that has all the known information

 Looks for and passes that object to the best known exception handler

 Java “throws” the error/exception and the handler “catches” it

 (Execution continues with an exception handler)

 If a handler is found, then it terminates execution immediately

 Java “throws” the error/exception (but nobody “catches” it!)

• The JVM can detect many errors

 We need to manually “catch” and handle them!

 The JVM at runtime will find the best error handler to pass the error to

• When you throw an exception, the normal control flow is terminated. This is

similar to a circuit breaker that cuts off the flow of electricity in a dangerous situation. 15

Hierarchy of Exception Classes

Figure: A Part of the Hierarchy

of Exception Classes

Hierarchy of Exception Classes (closer look)

Common Exceptions

A few common exceptions that are
encountered:

• IOException

 FileNotFoundException

• RuntimeException

 ArithmeticException

 IllegalArgumentException

 IndexOutOfBoundsException

 NullPointerException

• Errors

 OutOfMemoryError

 AssertErrors (JUnit)

• Every exception should be handled somewhere in your program

• Place the statements that can cause an exception inside a try block, and the handler
(way you are handling the failure) inside a catch clause.
try

{

String filename = . . .;

Scanner in = new Scanner(new File(filename));

String input = in.next();

int value = Integer.parseInt(input);

. . .

}

catch (IOException exception)

{

exception.printStackTrace();

}

catch (NumberFormatException exception)

{

System.out.println(exception.getMessage());

}

Catching Exceptions (try-catch)

Catching Exceptions - Example
try {

//code that should run

}

catch (ExceptionType e) {

//specific error handling code

}

…

catch (Exception e) {

// default error handling code

}

From most specific to least specific

e.g., FileNotFoundException is a

sub type of IOException

try {

Scanner scannerfile = new Scanner(new

File(“file.txt”));

}

catch (FileNotFoundException e) {

System.out.println(“File not found”);

}

catch (IOException e) {

System.out.println(“Error reading the file”);

}

catch (Exception e) {

System.out.println(“An error occurred”);

}

Syntax Catching Exceptions

Catching Exceptions (try-catch-finally)

• Finally is another block you can add to the typical “try-catch” blocks

• The first match in a series of catch code blocks will be where the program exists. However,
what if there is an error while a resource is in use?

 The finally block will always execute – even if the program encounters an error

try {

// open some files for exclusive
// access and… do something risky

}

catch (Exception e) {

// handle errors

}

finally {

// close the files

}

Custom Exceptions: EmptyStackException

• When popping off an empty stack, let's throw an exception

23

Custom Exceptions: EmptyStackException

• This code now throws an error! =======>

 [From the previous slide we see that the pop()
method throws an EmptyStackException
exception!]

 Must deal with the potential exception that gets
thrown

24

Custom Exceptions: EmptyStackException

• This code now throws an error! Must deal with the potential exception that gets thrown

25

Which Fix To Use?

• Which fix should I use? Matter of code design / style

• Generally:

 If error NOT your fault and not fatal, then give invoking method a chance to react to it by
throwing

 If fatal, then catch and crash (e.g., null pointer exceptions do this)

26

I Thought We Were Talking About Threads?!

• Yes, but Java’s concurrency libraries throw a lot of exceptions, so you will often need to
use try/catch statements to handle those.

• Remember…

• Now it will be:

27

Key Points About
Handling and Declaring
Exceptions
Some important notes about try, catch, and finally!

28

Exception Rules
(Key Points about Handling and Declaring Exceptions)

•

public void foo() {

Foo f = new Foo();

f.foof();

catch(FooException ex) {}

}

•

try {

x.doStuff();

}

int y = 40;

} catch(Exception ex) {}

•

void go() throws FooException {

try {

x.doStuff();

}

finally {// cleanup}

}

•

void go() throws ArithmeticException,

FileNotFoundException {

Foo f = new Foo();

f.foof();

// do more risky stuff

}

1 2

43

