[UNIVERSITY
I\/IRGINIA

CS 2100: Data Structures & Algorithms 1

Concurrency
Aside: Exception Handling

Dr. Nada Basit// basit@virginia.edu
Spring 2022

Friendly Reminders

—_— .

- The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). | know it is a lot to ask, and it is

voluntary, but | appreciate your understanding.

- If you forget your mask (or mask is lost/broken), | have a few available
- Just come up to me at the start of class and ask!

- No eating or drinking in the classroom, please
- Our lectures will be recorded (see Collab) — please allow 24-48 hrs to post

- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©

Announcements

- Final Exam:
* Date: Saturday, May 7, 2022

* Time/Duration: 7:00pm - 9:00pm ET (two hours)

* Location: TBD (Registrar will confirm rooms, will let you know soon)

- Make-up Exam: [Email me if you haven’t already]
* If you have a conflict with the following courses, email me:

- APMA 3100

- APMA 3140

- ECON 2020 (sections 001 and 002 only)
* Make-up Date: Sunday, May 8§, 2022

* At this time we do not have a time or a location; however, given there are no officially held final
exams on this day (May 8) we anticipate the chosen time will suit your schedule

The Final Exam — Saturday, May 77 (Make-up: May 8)

»Mode: Taken in-person » Location of Quizzes: ONLINE AS BEFORE.
Explicit instructions will be given on the day!

> Students with accommodations with SDAC:

»Duration: two (2) hours

»Policies: > Please see email that I have sent to you.
» Closed-book / Closed-notes »If you choose to book a testing
> Closed-Google/Internet (except to access appointment with SDAC, please do so as
the quiz itself) soon as possible!
> Closed-Eclipse/other IDE »You will have your extended time

accommodations
/> What to bring with you to the final exam: N
> Fully charged laptop (+ charging cable)

» Closed-friend/any other person
> Closed... everything ©

» Can retake as many quizzes as you want

»Pen/pencil to write on scratch paper

>
The work you do must represent your (not necessary, only if you want)

individual effort, and involve no outside
assistance from any one or any resource 0 »Student ID card)

An Aside:

Introduction to Exceptions

We need to talk about exceptions because when writing
multithreaded programs, these programs often throw
exceptions that need to be handled.

To understand this, we will discuss exceptions today!

‘Terminating Threads

—_— . —————

- A thread terminates when the run() method is complete

- Or, you can call:
‘t.interrupt(); // notifies the tread that it should terminate

- Does not stop the thread (immediately), rather it just sets a boolean
- The run method should check for this interrupt periodically

public void run(){
for(int 1=0; 1<=REPETITIONS && !Thread.interrupted(); i++){

1
J

‘Terminating Threads

public void run(){
for(int i=0; i<=REPETITIONS && !Thread.interrupted(); i++){

1
J

- To suspend execution of a thread, you can call: sleep()

- If a thread Is sleeping at the time it is interrupted... the thread is not awake to check
Thread.interrupted() condition!

- This is generally NOT a good setup to use

- To better understand how to proceed we have to detour and speak about EXCEPTIONS!

Motivation

- Problem: How do we deal with errors in code

* e.g., you divide a parameter by another parameter, what if the invoker gave you 0 as a
divisor?

* e.g., what do you do if a method tries to go off the end of an array
- Solution 1: Ignore the method call, or return a dummy value (null).

- Java Solution: Exceptions

Exceptions

- —_—

- Exceptions are events that disrupt the intended program flow

- Exception is short for “exceptional events”

- All exceptions must be:

* Detected 1 will not weite any more bad code
- Handled I will not weite any more bad code
during coding to prevent halting [A A

1 will not write any more bad code

the program (with no explanation) | R SR T B

I will not weite any more bad code

I will not weite any more bad code

- In Java, exceptions are objects that T will not write any more bad code

are created when an error or LWL e Ty iy e aed code
I will not weite any more bad code
problem has been detected il bl A e e e

- E.g. accessing a null pointer
or going off the end of an array

Exceptions

—_— .

- Java is Safe! By default, the Java approach to handling errors is to end the program
- Terminal error handling approach

- Aside: Resumptive error handling approach is pretty rare

java.lang.NullPointerException :““*
at PhotographContainer.addPhoto (PhotographContainer. java:36)

at Photolibrary.main (PhotoLibrary.java:165) CT
L

Exception Handling and Defensive Driving!

- If you'd like to use a “buzzword” term, use “defensive programming.”

- “Defensive driving” is when you drive expecting people around you to be bad drivers, so
you pay attention to what they COULD do wrong, that way you're ready to deal with it
if/when it happens. “Defensive Programming” is the same idea!

- Defend yourself against bad coders/users! ©

This photo by Author is licensed under CC BY

https://creativecommons.org/licenses/by/3.0/

Exception Handling - Throwing Exceptions

- Exception handling provides a flexible mechanism for passing control from the point of
error detection to a handler that can deal with the error.

- When you detect an error condition, throw an exception object to signal an exceptional
condition

Syntax throw exceptionObject;

Syntax Throwing
an Exception: b o it
if (amount > balance) /H-H ST A
%Eﬂmﬁ? _____;__ throw new IllegalArgumentException("Amount exceeds balance®);
then thrown. balance = balance - amount; i e s ot exeseted e

the exception is thrown,

Exceptions

—_— . —————

- When an exception is created, there are two ways to handle it:

- THROW: this means that the current method will NOT deal with the exception. The
exception is thrown to the method that invoked this one. Then, that method can either
throw or catch it.

- CATCH: This means that you deal with the exception right now. Crash the program, spit
out an error message, ignore the exception, etc.

- In the example below, Method 2 can either catch the exception or throw it to Method 1 to
deal with:

Main — Method1— Method2: Exception! — Method:

Example Exceptions

- — ., ———

- Here are some exceptions that can be generated in Java

/* NullPointerException */
Object o0l = null;
System.out.println(ol.toString()); // '!!

/* ArrayIndexOutOfBoundsException */
int[] arr = new int[10];
arr[12] = 5; // 1!l

java.lang.NullPointerException: Cannot invoke "Object.toString()" because "ol" is null
at Testl.main(Testl.java:27)

JVM Exceptions:
How the JVM handles errors during run-time

- When the JVM detects an exception (error), Java
- Creates an Exception (error) object that has all the known information
- Looks for and passes that object to the best known exception handler
- Java “throws” the error/exception and the handler “catches” it
- (Execution continues with an exception handler)
- If a handler is found, then it terminates execution immediately
- Java “throws” the error/exception (but nobody “catches” it!)

- The JVM can detect many errors
* We need to manually “catch” and handle them!
- The JVM at runtime will find the best error handler to pass the error to

O Lisa F YoungiSockphos.

- When you throw an exception, the normal control flow is terminated. This is
similar to a circuit breaker that cuts off the flow of electricity in a dangerous situation.

Hierarchy of Exception Classes

Note:

. . e All errors
Figure: A Part of the Hierarchy R » / .
of Exception Classes CXCEPHIONS mus

,} inherit from
| - Throwable!

I0Exception Found

i f Which means, the

When constructing
| FileNotFound a scanner or writer Arithmetic

java. io Exception with a non-existent file Exception Thr owda b l e Cl ass is

When calling

- -ame Wi the superclass of all
errors and exceptions

Import from

UnknownHost e Number Fornat
il L — Argument
Exception Except .
in the Java language
When calling
Igde"ﬂdt t, nextInt, or nextDoubl
[— OfBoun canner and no input
Excepti labl
Import from e
java.util
NoSuch -
= Element ﬂ—Igu:-lirﬁ;h
Exception ¥
NullPoint When calling
. Except tInt or nextDoubl
Figure 2 er and the input t

A Part of the Hierarchy

_ of the expected form
of Exception Classes|

Hierarchy of Exception Classes (closer look)

I0OException

4

FileNotFound
Exception

ClassHot
Found
Exception

When constructing
a SCANNEr Or Writer
with a non-existent file

Runtime
Exceptio

A

When constructing
3 SCANMNET OF Writer
with a non-existent file

Import from
java.util

Runtima
Exception

A

| Arithmetic

Exception

ClassCast
Exception

ITlegal
Argument
Exception

IndexOut
OfBounds
Exception

MoSuch
Element
Exception

| MullPointer

Exception

i

When calling
Integer.parselnt or
Double. parseDouble with
an illegal argument

NumberFormat
Exception

When calling
next, nextInt, or nextDouble
on a scanner and no input
is available

Inputhismatch
Exception

When calling
nextInt or nextDouble on a
scanner and the input is not

of the expected form

Common Exceptions

A few common exceptions that are
encountered:

- |OEXxception | — .
- FileNotFoundException . Excastion
A A
- RuntimeException i | esotont o | it
- ArithmeticException hencaling

MalformedURL ClassCast Integer.parselnt or

- lllegal ArgumentException et i
- IndexOutOfBoundsException wrmeoss el emtarronr

Exception L5 Lt Exception

Exception
 NullPointerException S
IndexOut
xt, nextInt, or nextDoubl
— Offound canner and no input
Except vailable

- Errors e
- OutOfMemoryError " e, B
- AssertErrors (JUnit) | vt —

. Exception nextInt or nextDouble on a
Figure 2

. scanner and the input is not
A Part of the Hierarchy of the expected form

of Exception Classes|

Catching Exceptions (I1y-calch)

-

- Every exception should be handled somewnhere in your program

- Place the statements that can cause an exception inside a try block, and the handler

(way you are handling the failure) inside a catch clause.
try

String filename = . . .;
Scanner in = new Scanner(new File(filename));
String input = in.next();

int value = Integer.parseInt(input); Throwable

methods
catch (IOException exception)

{

exception.printStackTrace();

catch (NumberFormatException exception)

{

. System.out.printin(exception.getMessage());

Catching Exceptions - Example

try { try {
Scanner scannerfile = new Scanner(new
} File(“file.txt”));
. }
catch (ExceptionType e) {
} catch (FileNotFoundException e) {
System.out.printin(*File not found”);
}

catch (Exception e) {
catch (IOException e){

} System.out.printin("Error reading the file”);
}

From most specific to least specific

e.g., FileNotFoundException is a catch (e) {

sub type of IOException System.out.printin(*An error occurred”);

}

Syntax Catching Exceptions

Syntax try
{

statement
statement

1
catch (Exception Class errfptfﬂﬂﬂbjed}
{

statement
statement
1 Thiz construetor can throw a
FileNotFoundException.
try
{
Scanner in = new Scanner(new File(™input.txt"));
String input = in.next();
L process(input);
When an T0Exception is theown, - This is the exception that was thrown.

execution resumes here.

\\\catch (IDException exception)
{

System.out.printIn("Could not open input file");

}
Additional eateh clavses ——— .+ (Exception except) A FileNotFoundException
ean appear here. Place [it a special case of an IOException.
more specific exeeptions System.out.printin(except.getMessage());

before more general ones. !

Catching Exceptions ()

- Finally is another block you can add to the typical “try-catch” blocks

- The first match in a series of catch code blocks will be where the program exists. However,
what if there is an error while a resource is in use?

- The finally block will always execute — even if the program encounters an error

try {

// open some files for exclusive
// access and.. do something risky

}
catch (Exception e) {

// handle errors

}
finally {

// close the files
}

Custom Exceptions: EmptyStackException

- When popping off an empty stack, let's throw an exception

public class EmptyStackException extends Exception{

¥

public class Stack<T>{
private LinkedList<T>» theStack;

public T pop() throws EmptyStackexception{
if(thestack.size == @)
throw new EmptyStackException();

return theStack.removeFirst();
)
}

Custom Exceptions: EmptyStackException

- This code now throws an error! =======> S -Cp IR SIS

* [From the previous slide we see that the pop() IS ETERTST I Nt o)
method throws an EmptyStackException
exception!]

- Must deal with the potential exception that gets |§
thrown :

s.pop();

public void someMethod() throws EmptyStackException{

s.pop();

)

Custom Exceptions: EmptyStackException

- This code now throws an error! Must deal with the potential exception that gets thrown

/* FIX 2: Deal with the error NOW! */
public void someMethod() {
/* some code here */

try {
s.pop();
}

catch(EmptyStackException e) {
/* You can do anything here */
e.printStackTrace();
System.exit(1l);

}

finally {
// This code will run regardless if
// exception is thrown or not

}

Which Fix To Use?

_

- Which fix should | use? Matter of code design / style

- Generally:

- If error NOT your fault and not fatal, then give invoking method a chance to react to it by
throwing

- If fatal, then catch and crash (e.g., null pointer exceptions do this)

I Thought We Were Talking About Threads?!

- Yes, but Java’s concurrency libraries throw a lot of exceptions, so you will often need to
use try/catch statements to handle those.

public void run(){
° R[M[MB[R .. for(int 1=0; 1<=REPETITIONS && IThread.interrupted(); i++){

1
J

public void run(){
try{

. N()w ”. WH_I_ B[for(int i=@; i<=REPETITIONS; i++){

sleep(1000)
1
i)

1
J

catch(Interruptedexception e){

1

}
finally{

1
J
1
J

Key Points About
Handling and Declaring
Exceptions

SOME IMPORTANT NOTES ABOUT TRY, CATCH, AND FINALLY!

Exception Rules

(Key Points about Handling and Declaring Exceptions)

e You cannot have a catch or finally without a a You cannot put code between the try &

try

public void foo() {
Foo f = new Foo();
f.foof();
catch(FooException ex) {}

/

e A try MUST be followed by a catch or a
finally, but still declare an exception if no
catch

void go() throws FooException {

try {
x.doStuff();

}
finally {// cleanup}

't

catch

try {
x.doStuff();

}

int y = 40; —
} catch(Exception ex) {}

o Multiple exceptions can be declared in a

method after the throws keyword (incl.
unchecked)

void go() throws ArithmeticException,
FileNotFoundException {

Foo f = new Foo();
f.foof();

// do more risky stuff

