
CS 2100: Data Structures & Algorithms 1

Concurrency
Introduction to Threads

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Announcements

• Final Exam:

• Make-up Exam:

3

The Final Exam – Saturday, May 7 (Make-up: May 8)

➢

➢

➢

➢

➢

➢

➢

➢ ☺

➢

➢

➢

➢

➢

➢

➢

➢

➢

➢

➢ 4

Introduction to
Concurrency /
Multithreading
Let’s introduce some basics and some terminology

5

General Overall Goals

• To understand how multiple threads can execute in parallel

• To learn to implement threads

• To understand race conditions and deadlocks

• To avoid corruption of shared objects by using locks and conditions

• Content:

 Running Threads

 Terminating Threads

 Race Conditions

 Synchronizing Object Access

 Avoiding Deadlocks

6

Motivation

• Basic idea: Running code in sequence (i.e., one line of code after another) is fine, and easy.

However, what if we could write code that runs in parallel instead?

Often it is useful for a program to carry out two or more tasks at the same time. This can be
achieved effectively by implementing threads

• Then, our code would run much faster right? Running code segment 1 and 2 in parallel is

better than executing code 1, then code 2.

 Answer: Well, yes sometimes but not always.

7

Some Definitions

• Process: A program that is running on a machine (e.g., MS Word, Browser, etc.). These

processes usually run in parallel.

• Thread: A thread is a piece of code that runs in parallel within a single process.

 e.g., Browser may have one thread that handles input from the user and another thread
that fetches images to display on the current webpage in parallel.

 The process has control over all of its threads.

• CPU (Core): A CPU is a chip that runs code. If your machine is a quad-core machine,

then you have four computers in your laptop (good for you!)

• Resource: A thing (variable, object, file) that a thread wants to interact with

 Short version: If threads want to use the same resource, then we have problems.

8

Single Core Concurrency

9

Multiple Core Currency

10

Running Threads

• As mentioned, a thread is a program unit that is executed independently of other parts of

the program

• The Java Virtual Machine executes each thread in the program for a short amount of time

[“time slice”]

• This gives the impression of parallel execution

• If a computer has multiple central processing units (CPUs), then some of the treads can

run in parallel, one on each processor

11

Basic Thread Example

12

Threads In Java

• Typically, a Java program is a process with one thread.

• But, Java provides a nice way to create new threads that run in parallel.

• In comes the Java Thread class and Runnable interface

• A Thread Scheduler runs each thread for a short amount of time (time slice)

 Then the scheduler activates another thread

 There will always be slight variations in running times – especially when calling
operating system services (e.g. input and output)

• There is no guarantee about which thread runs first, or what order threads run in

 The “guts” of each thread can be interleaved like a deck of cards

• No guarantee about where in code a thread is paused while another takes over.
13

Making A Thread In Java

1. Create a task to be run in a thread by implementing the Runnable interface:

public interface Runnable
{

void run(); // one method stub
}

2. Place the code for your task into the run method of your class (implements Runnable):

public class MyRunnable implements Runnable
{ // spawned thread knows to seek run() method

public void run() // write the body for run() method
{

Task statements
. . .

}
} 14

Making A Thread In Java

3. Create an object of your subclass: (e.g. “MyRunable”)

MyRunnable task = new MyRunnable();

4. Construct a Thread object from the MyRunnable object:

Thread t = new Thread(task);

5. Call the start method (from Thread class) to start the thread: (eventually the

run() method gets run – scheduled to be invoked)

t.start(); // Thread starts and calls task.run()
// run() method tells the thread what to do

15

Eclipse DEMO
GreetingRunnable.java – Basic, one thread example ~ “Hello World!”

GreetingThreadRunner.java – Two thread example ~ “Hello” / “Goodbye”

16

Example: Sorting Two Lists

• Suppose I have two large lists and I need to

sort both

• This example is NOT threaded: [sequential]

17

Example: Sorting Two Lists

• This example is

IS threaded:

• Threads t1 and t2 are

spawned

 Each associated
with a list to sort

• The threads are started

• The lists are sorted

“in parallel”

18

Terminating Threads

• A thread terminates when the run() method is complete

• Or, you can call:

t.interrupt(); // notifies the tread that it should terminate

• Does not stop the thread (immediately), rather it just sets a boolean

 The run method should check for this interrupt periodically

19

Terminating Threads

• To suspend execution of a thread, you can call: sleep()
 If a thread is sleeping at the time it is interrupted… the thread is not awake to check
Thread.interrupted() condition!

 This is generally NOT a good setup to use

• To better understand how to proceed we have to detour and speak about EXCEPTIONS! 20

