
CS 2100: Data Structures & Algorithms 1

Priority Queues
Heapsort

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Heapsort
Another sorting algorithm in the better complexity class

(log-linear complexity)

3

{Reminder} How to Sort?

• Some “straightforward” sorting algorithms


 Each is O(n2)

• More efficient sorting algorithms


 Each is O(n log n)

4

Heapsort

• Basic idea: Use a heap to sort a list of numbers

 Two primary ways to do this

 One is easier, but not in-place

 The other is in-place

5

Heapsort: Solution 1

Given a list of n unsorted elements…

1. Instantiate a heap (minHeap or maxHeap depending on which way you want to sort!)

2. Insert n elements

3. Remove n elements Done ☺

Each one has an insertion time of log n, and then a removal time of log n

Hence Θ(n log n)

But it's not a stable sort, so it's not used as often as mergesort

6

Heapsort: Solution 2 (in-place)

Overall idea: For an array of size n, use the array from position 1 through heap_size as a

maxHeap, and from position heap_size+1 to n-1 as a sorted list.

1. [step 1] Turn the unsorted array into a maxHeap

2. [step 2] Remove max (poll()) each element one at a time.

 Move the element that is removed to the back of the array so it is in its sorted position.

Notes: Need to deal with the indexing from 1 vs 0 issue.

We are using a maxHeap to sort in ascending order (small -> large) 7

[index 1 .. heap_size] MAXHEAP [index heap_size+1 .. n-1] SORTED LIST

Heapify!

• [step 1]: Given an unsorted array, turn it into a maxHeap.

 How? Start at the back of the array (i.e., the leaves)

 For each index i, call percolateDown(i)

 This turns array from i to n into a max heap

 What to do with index 0?

8

Let’s Heapify:

• The result is [performing level order / heap form]: []
9

Heapsort: Poll()

• [step 2]: Call Poll() – same as before, except:

 Swap root with last element in heap, then percolateDown()

• Let’s step through it!

10

Heapsort: Poll()

• poll(): (“remove 22 and save at end of list”) 22 swaps with 8; 8 percolates down:
12 10 7 8 9 3 4 22

• poll(): (“remove 12 and save at end of list”) 12 swaps with 4; 4 percolates down:
10 9 7 8 4 3 12 22

• poll(): (“remove 10 and save at end of list”) 10 swaps with 3; 3 percolates down:
9 8 7 3 4 10 12 22

11

Heapsort: Poll()

• poll(): (“remove 10 and save at end of list”) 10 swaps with 3; 3 percolates down:
9 8 7 3 4 10 12 22

• poll(): (“remove 9 and save at end of list”) 9 swaps with 4; 4 percolates down:
8 4 7 3 9 10 12 22

• poll(): (“remove 8 and save at end of list”) 8 swaps with 3; 3 percolates down:
7 4 3 8 9 10 12 22

• poll(): (“remove 7 and save at end of list”) 7 swaps with 3; 3 percolates down:
4 3 7 8 9 10 12 22

• poll(): (“remove 4 and save at end of list”) 4 swaps with 3; 3 percolates down:
3 4 7 8 9 10 12 22

12Technically one more poll() to do, but not

necessary. Our list is sorted in ascending order!

Heapsort: Analysis

• Heapify():

 Basic heap operation, Heapify, runs O(log n)

 Heap has log n levels, and the element being shifted moves down one level of the tree
after a constant amount of time

 Based on this: we need to apply Heapify roughly n/2 times (to each of the internal nodes)

 Start at node Math.floor(n/2), call percolateDown()

 log(n) * (n/2) = Theta(nlogn)

• Poll()

 invoke n times, each one is log(n)

 n*log(n)

• Total (Heapsort): heapifying + polling ➔ (n/2)log(n) + nlog(n) = Theta(nlogn)

13

