
CS 2100: Data Structures & Algorithms 1

Priority Queues / Binary Heaps
Binary Heap Operations (Insert; DeleteMin; findMin)

Dr. Nada Basit // bas i t@v i rg in ia . ed u

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Binary Heap Operations
Methods: insert, deleteMin, findMin)

3

Binary Heap Operations

• push(T data): Add data to priority queue

 Uses percolate up

 Sometimes priority is given OR data is comparable

 (term comes from Java documentation)

• poll(): Remove next priority item

 Uses percolate down

 (term comes from Java documentation)

• peek(): just look at the root node

4

Binary Heap: push(T data)

• Basic Idea:

 Put data at “next” leaf position

 Repeatedly exchange node with its parent if needed

• Example Implementation:

 Assume that the heap is represented by a vector, and heap_size is the number of heap
elements inserted into the vector (it is NOT the capacity of the vector)

5[pseudo-code] Implementation: Heap = vector Implementation: Heap = ArrayList

Binary Heap: percolateUp(int index)

• Place a new item in the right-most position in the bottom-most level (without introducing

gaps). We have appeased the SHAPE property. Now let’s look at the order property
(percolateUp(index) method to place the item in the right spot.)

• Note, pIndex is for storing the index of the parent node so we can compare its value with

the new item’s value (to determine if a swap is needed).

6

Complexity:
Inserting (push) a node into a Binary Heap

• Add the element to the bottom level of the heap – maintaining the shape property

• Compare the added element with its parent; if they are in the correct order, stop

• If not, swap the element with its parent and return to the previous step (the parent

must be less than or equal to its children – maintaining the order property)

• The number of operations required is dependent on the number of levels the new

element must rise to satisfy the heap property

• Time complexity (worst case): O(log n)

7

7

• Expected running time:

 In a binary tree, the number of elements per level doubles (1, 2, 4, 8, …)

 How far do elements actually move up the Binary Heap?

 Half of the nodes are leaves, so half of the inserts perform 1 check (and remain at the

bottom / leaf level)

 A quarter of the nodes are one level above the leaves, so ¼ of the inserts will perform 2

checks (first check causing a swap, and second check requiring no swap) moving up two

levels

 One eighth of the nodes are two levels above the leaves, so 1/8 of the inserts will

perform 3 checks (swap/swap/no swap) moving up three levels

 One sixteenth … will require moving up four levels

 Expected running time:
1

2
∗ 1 +

1

4
∗ 2 +

1

8
∗ 3 +⋯ = Sum[

1

2𝑖
∗ 𝑖] = 2

• Time complexity (in practice): Weighted average of sum approaches 2 = Constant time!

Complexity (another view):
Inserting (push) a node into a Binary Heap

8

8

Complexity (another view)
for Inserting (push) & Discussion

• The worst-case scenario is O(log n)

• However, in practice it is constant – approximately 2 checks per insert!

• Discussion:

 For your analysis assignment don’t be surprised that your insert/push method behaves like it is
constant time even though technically its complexity is O(log n) ☺

 What might the worst-case scenario be? Adding in descending order (large -> small) every new
element is the smallest element in the heap! (travels all the way to the top every time). In reality,
adding the smallest element in the heap is a rare occurrence.

9

Adding to a Binary Heap (push and percolateUp)

15

25 16

40 78 17 18

50 42 80 90

15

25 16

40 78 17 18

50 42 80 90 35

Let’s push 35 into the Binary Heap

The heap properties are satisfied, nothing to re-arrange. 10

15

25 16

40 78 17 18

50 42 80 90 35

15

25 16

40 78 17 18

50 42 80 90 35 9

17 cannot be a parent to 9, as 9 is less than 17

Adding to a Binary Heap (push and percolateUp)

Let’s push 9 into the Binary Heap

11

15

25 16

40 78 9 18

50 42 80 90 35 17

15

25 9

40 78 16 18

50 42 80 90 35 17

16 cannot be a parent to 9

(16 > 9)
15 cannot be a parent to 9

Adding to a Binary Heap (push and percolateUp)

12

• What does it mean for ‘9’ to

rise to the top of the min-heap?
9

25 15

40 78 16 18

50 42 80 90 35 17

Adding to a Binary Heap (push and percolateUp)

13

• The min value is always the

root element (in a min heap)

• In this case, since ‘9’ was added to

the heap, and it was the smallest

item, it rose to the top, and

became the root of the heap!
(Generally, a rare occurrence)

9

25 15

40 78 16 18

50 42 80 90 35 17

Adding to a Binary Heap (push and percolateUp)

14

15

Exercise For You (push and percolateUp)

Let’s push 5 into the following Binary Heap

2

10 7

22 11 9 12

Binary Heap: poll()

• Basic Idea:

1. Remove root (that is always the min!)

2. Put “last” leaf node at root (maintains shape property)

3. Find smallest child (why?)

4. Swap node with smallest child if needed

5. Repeat steps 3 & 4 until no swaps needed

16

Consider this min-heap. 25 needs

percolating. What do you do?

Which child node do you swap with?

What happens if we swap with the
10?

25

10 7

Binary Heap: poll() – Pseudo-code

• Remove from the root

• Decrement size

• Replace the root with the last element

(size, not capacity); delete that leaf

• percolateDown(index) as needed

17

Complexity:
Deleting (poll) a node from a Binary Heap

• Replace the root of the heap with the last element on the last level – maintaining

the shape property

• Compare the new root with its children; if they are in the correct order, stop

• If not, swap the element with one of its children and return to the previous step.

(Swap with its smaller child in a min-heap and its larger child in a max-heap –

maintaining the order property)

• In the worst case, the new root has to be swapped with its child on each level until it

reaches the bottom level of the heap, meaning that the delete operation has a time

complexity relative to the height of the tree. Time complexity: O(log n)

• [When retrieving the smallest element, we delete the root node]

18

Deleting (poll) a node from a Binary Heap

• For a priority queue, you always remove the least

value element (highest priority - think priority #1)

• In this heap, 15 is least, we will

remove it and replace it with the last node on the

right at the bottom level of the heap (90)

Note: no other node is appropriate to

initially replace 15!

• When retrieving the

smallest element, we

delete the root node (min heap)

15

25 16

40 78 17 18

50 42 80 90

19

poll() method: remove root!

• Remember, when calling poll() you are NOT specifying which element to remove

• The poll() method always removes at the root of the binary heap (nothing else!)

• So that the tree (heap) doesn’t remain without a root node, replace it with last node on the

right at the bottom level of the heap

20

20

Removing an element from a Binary Heap
(poll and percolateDown)

• Maintain order property … (to preserve the heap!)

90

25 16

40 78 17 18

50 42 80

16

25 90

40 78 17 18

50 42 80

21

Removing an element from a Binary Heap
(poll and percolateDown)

• Notice how this

rearrangement results in

the next smallest element

(16) positioned at the root

(after original root was

removed)?

• Also, the tree is balanced!

16

25 17

40 78 90 18

50 42 80

22

Removing an element from a Binary Heap
(poll and percolateDown)

16

25 17

40 78 90 18

50 42 80

Notice: In a binary heap,

after the root node, the

next two smallest values

are NOT always going to be

the immediate children of

the root node!

(17 is but 18 isn’t)

23

Other Possible Heap Operations

• decreaseKey(processID, amount): find, "raise" the priority of a process, percolate up

• increaseKey(processID, amount): find, "lower" the priority of a process, percolate down

• remove(processID): find, remove a process, move to top, then delete.

• Worst-case running time for all: Θ(n), because for all these methods find() operation is
required. (In a priority queue, no natural way to find an element quickly)

• What about FindMax?

 Create a maxHeap instead! Or remove everything until you remove the last element!
Or in the vector, linearly search for the largest element in the lower half of the vector
(usually where you’ll find the largest element – not near the root/top)

• ExpandHeap: when heap fills, copy into new space.

24

Heaps (Summary & Complexity)

• push: percolate up; Θ(log n) time worst case,

but constant expected time


• poll: percolate down; Θ(log n) time worst case;

also logarithmic expected time


• peek: Θ(1) time


➔

25

Additional Slides

26

Inserting a node into a Heap

27

27

Inserting a node into a Heap

28

28

Deleting a node from a Heap

29

29

Deleting a node from a Heap

• Note: next smallest element is now at the root!

30

30

