
CS 2100: Data Structures & Algorithms 1

Priority Queues / Heaps
Intro. To Priority Queues; Binary Heap Structure

Dr. Nada Basit // bas i t@v i rg in ia . ed u

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Priority Queues
An Abstract Data Type (ADT)

3

Motivation for Priority Queue

• Multiuser environment

 Operating system must choose which process to run on CPU

• Management of limited resources

 Bandwidth on network router

 Limited bandwidth, but want to give best possible performance

 Send traffic from highest priority queue first

 Example: VoIP

4

Motivation for Priority Queue

• Hospital Waiting Room

• Option A) Insert in FCFS order to List; Remove by searching for highest priority

• Option B) Insert in sorted order (priority) to List; Remove at one end of List

• We want…

• Efficient patient registration (insert)

AND

• Efficient removal (to see a Dr.) based on priority level

• How can we achieve BOTH?? 5

Solution? Heaps!

6

Heaps (“Binary Heaps”)

• The heap data structure is an example of a balanced binary tree

• Useful in solving three types of problems:

 Finding the min or max value within a collection

 Sorting numerical values into ascending or descending order

 Implementing another important data structure called a priority queue

Other priority queue scenarios in real life:

➢Professor office hours (what if another professor stops by, or the department chair?) or

➢Getting on an airplane (first class + families, frequent flyers, by row, etc.) or

➢Shipping packages (amount of shipping paid, destination, etc.)

7
We will implement the abstract idea of a PRIORITY QUEUE with Binary Heap!

Priority Queue ADT - Model

• Operations

 Push

 Inserts with a priority

 Peek

 Finds the minimum element (doesn’t remove)

 Poll (remove)

 Finds, returns, and removes minimum element

8

Priority Queue Data Structures
Data Structure push peek poll (remove)

Unsorted array Θ(1) amortized Θ(n) Θ(n)

Unsorted linked list Θ(1) Θ(n) Θ(n)

Sorted array Θ(n) Θ(1) Θ(1)

Sorted linked list Θ(n) Θ(1) Θ(1)

9

Structure push peek poll (remove)

BST Θ(n) Θ(n) Θ(n)

AVL / RB tree Θ(log n) Θ(log n) Θ(log n)

Hash table ideally constant Θ(n) Θ(n)

➢ We would like:

• peek: always constant

• push: worst case Θ(log n), typical case constant

• poll (remove): worst and average case Θ(log n)

Binary Heaps
An Abstract Data Type (ADT)

10

Heaps (“Binary Heaps”)

• A binary heap is a heap data structure that is one possible implementation of a

priority queue

• It is a binary tree (not a BST) with two additional constraints:

• Shape (structure) property:

 A heap is a complete binary tree, a binary tree of height (i) in which all leaf

nodes are located on level (i) or level (i-1), and all the leaves on level (i) are as far

to the left as possible

• Order (heap) property:

 The data value stored in a node is less than or equal to the data values stored in

all of that node’s descendants

 (Value stored in the root is always the smallest value in the heap)

 Parent nodes have a higher priority than any of their children 11

Some Definitions

• A perfect (or complete) binary tree has all leaf nodes at the same depth; all internal nodes

have 2 children.

12

15

25 16

40 78 17 18

root →root →

Heap Shape (Structure) Property

• A binary heap is an almost complete binary tree. the tree is completely filled, except

possibly the bottom level, which is filled left to right.

• Almost complete binary tree of height h:

• For h = 0, just a single node

• For h = 1, left child or two children

• For h ≥ 2, either:

 the left subtree of the root is complete with height h-1
and the right is almost complete with height h-1, OR

 the left is almost complete with height h-1 and the
right is complete with height h-2

13

Leaf nodes on level (i) or level (i-1)?

• Notice that all leaves are located on level (i) or level (i-1)

• Where level (i) is the furthest away from the root

14

15

25 16

40 78 17 18

50 42 80 90

Level i-3 (level 1)

Level i-2 (level 2)

Level i-1 (level 3)

Level i (level 4)

root →

14

Leaf nodes on level (i) or level (i-1)?

• Notice that all leaves are located on level (i) or level (i-1)

• Where level (i) is the furthest away from the root

15

15

25 16

40 78 17 18

50 42 80 90

Level i-3 (level 1)

Level i-2 (level 2)

Level i-1 (level 3)

Level i (level 4)

root →(at least)

Complete

Binary

Tree (root

to level i-1)

→

15

Heap Shape (Structure) Property - Implementation

• all leaves are on the lowest two levels

• nodes are added on the lowest level, from

left to right

• nodes are removed (to replace the root)

from the lowest level, from right to left

16

Where are nodes added or removed?

• Where to add? Left child of 17

• What to remove? Node 90

(to replace the root)

• Nodes added: → → → → from left to right (no gaps) → → → →

• Nodes removed:← ← ← ← from right to left (no gaps) ← ← ← ←

17

15

25 16

40 78 17 18

50 42 80 90

root →

?

17

Complete Binary Tree

18

(complete except for the ‘last’ level)

Which of these trees is a complete binary tree?

18

Why Are The First Two Invalid??

19

(complete except for the ‘last’ level)

19

Examples of Invalid Heaps

20

Nodes on the bottom

row are not all the

way to the left

The right leaf is not balanced

(Leaf nodes appear at an inappropriate

level – not level (i) or (i-1)) 20

Complete Binary Trees in Arrays

• We can store the elements of our heap in a one-dimensional array in strict left-to-

right, level order (“breadth-first traversal”)

• That is, we store all of the nodes on level i from left to right before storing the nodes

on level i + 1. This one-dimensional array representation of a heap is called a

heapform

 Usually we ignore index position 0

 Some real handy and simple formulas can
be used to compute children, siblings,…

 2i: left child, 2i+1: right child

 Math.floor(i/2): parent

21
-1 A B C D E F

• Several methods can be implemented without recursion.
For a heap with a starting index of 1:

 int getParent (i) { return Math.floor(i / 2); }

 int getLeftChild (i) { return 2i; }

 int getRightChild (i) { return 2i + 1; }

 int getSibling (i) { if i is even and i < n: i+1,
else if i is odd and i > 2: i-1; }

• For a heap with a starting index of 0:

 int getParent (i) { return Math.floor[(i-1) / 2]; }

 int getLeftChild (i) { return 2i + 1; }

 int getRightChild (i) { return 2i + 2; }

 int getSibling (i) { if i is odd and i < n-1: i+1,
else if i is even and i > 1: i-1; }

Implementing a Heap in an Array

22

Why Better Than References?

• We do not need pointers/references in this array-based representation because the parent,

children, and siblings of a given node must be placed into array locations that can be

determined with some simple calculations (see previous slide)

• Saves space

 No need to store parent/child references

 Arrays are more compact in memory

• Saves time

 Arrays work better with cache

 (*2), (/2), + operations are faster than dereferences

 Allocating objects is slow compared to arrays

• Parent is easy to locate (i.e. free parent pointer)

23

Heap Order (Heap) Property

• The data value stored in a node is less than or equal to the data values stored in all of that

node’s descendants

• (Value stored in the root is always the smallest value in the heap)

• Parent nodes have a higher priority than any of their children

• For every non-root node X, the key in the

parent of X is less than (or equal to) the key in X.

Thus, the tree is partially ordered.

24

Minheap vs Maxheap

• We could just as easily define a heap in which a node’s value is greater than or

equal to the data values stored in all of that node’s descendants.

• In this case, all algorithms would simply change the < operator to a >, and every

occurrence of the word smallest would be replaced by largest.

25

Minheap

• This is a min heap

• The smallest value is

the root of the tree

• All nodes are smaller

than ALL its descendants

• Note: a heap is NOT a binary search tree – values larger than the root can appear on

either side as children
26

No orderings between sibling nodes

• There are no implied orderings between siblings, therefore, both of the trees below

are min-heaps :

5 5

/ \ / \

10 12 12 10

• What does matter is the parent-child relationship (top-bottom) rather than
siblings (left-right)

27

Heap Order (Heap) Property:
Can you recognize min heaps… (1)

• Which of the following are min-heaps?

• Answer:

28

1) 2)

28

Heap Order (Heap) Property:
Can you recognize min heaps… (1)

• Which of the following are min-heaps?

• Answer: Only heap 2.

29

1) 2)

29

Heap Order (Heap) Property:
Can you recognize min heaps… (2)

• This one is NOT a minheap. Why?

30

