
CS 2100: Data Structures & Algorithms 1

Hash Tables
Open Addressing; Analysis on Hashing

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022



Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see 
Collab), I would greatly appreciate if you would do me a kind favor by continuing 
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is 
voluntary, but I appreciate your understanding. 

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2



Separate Chaining
A Collision Resolution Technique

3



We Spoke About…
Collision Resolution: Separate Chaining

4



Open 
Addressing
Another Collision Resolution Technique

5



Saving Memory

• Can we avoid the overhead of all those linked lists?

 Separate Chaining is a great collision resolution technique, but it takes up 
a lot of extra space!

6



Three Types of Probing Strategies

• Open Addressing is a Collision Resolution technique that is sometimes called by its 

specific type, for example “Linear Probing”

• There are three types of probing strategies:

 Linear

 Quadratic

 Double hashing

• The general idea with all of them is that, if a spot is occupied, to 'probe', or try, other spots 

in the table to use

 How we determine where else to probe depends on which strategy we are using

7



Linear Probing Collision Resolution Technique

• If faced with a collision situation, the linear probing technique will look into subsequent 

slots until the first free space is found

 When probing for an empty slot, we take one “step” at a time, it is called linear probing

• Check spots in this order:

 hash(k), hash(k)+1, hash(k)+2, etc.

• hash(k) = 3k+7

 Which is then mod'ed by the table size (10)

 Result: hash(k) = (3k+7) mod 10

• Insert: 4, 27, 37, 14, 21

 hash(k) values: 19, 88, 118, 49, 70, respectively
8



Linear Probing Collision Resolution Technique

• With all open addressing schemes, we examine ('probe') the cells in the order:

 p0(k), p1(k), p2(k), ...

 where: pi(k) = (hash(k) + f(i)) mod table_size

• With linear probing, f(i) = i

 After searching spot hash(k) in the array, look in:

 hash(k) + 1

 hash(k) + 2

 hash(k) + 3

 etc.

9



Problems With Linear Probing 

• Primary clustering

 Large blocks of occupied cells

 As table fills, increased number of attempts required to solve collision

 And thus, slower lookup times

 "Holes" when an element is removed

 We'll see how to solve this later

 When to stop looking?

 Not always clear.

 Continue until you find the element (linear search the remainder of the list!)

 Continue until you get to the end of the structure (when you do not find the target)

10



Example of Hash Collision Resolution



Quadratic Probing Collision Resolution Technique

• With all open addressing schemes, we examine ('probe') the cells in the order:

 p0(k), p1(k), p2(k), ...
 where: pi(k) = (hash(k) + f(i)) mod table_size

• With quadratic probing, f(i) = i2

 After searching spot hash(k) in the array, look in:

 hash(k) + 12 = hash(k) + 1
 hash(k) + 22 = hash(k) + 4
 hash(k) + 32 = hash(k) + 9
 etc.

• Remember, the hash function could be: hash(k) = 3k+7
 Insert: 4, 27, 37, 14, 21

 hash(k) values: 19, 88, 118, 49, 70, respectively

12

Spreads things out 

a bit more 

(no large clusters)



Double Hashing Collision Resolution Technique

• With all open addressing schemes, we examine ('probe') the cells in the order:

 p0(k), p1(k), p2(k), ...

 where: pi(k) = (hash(k) + f(i)) mod table_size

• With double hashing, f(i) = i * hash2(k)

 Which means we have to define a secondary hash function!

 After searching spot hash(k) in the array, look in:

 hash(k) + 1 * hash2(k)

 hash(k) + 2 * hash2(k)

 hash(k) + 3 * hash2(k)

 etc.

13

Combine with a 

secondary

hash function!



Double Hashing Collision
Resolution Technique

• Check spots in this order:

 hash(k)

 hash(k) + 1 * hash2(k)

 hash(k) + 2 * hash2(k)

 hash(k) + 3 * hash2(k)

• hash(k) = k

 Result: hash(k) = k mod 10

• hash2(k) = 7 – (k mod 7)

• Insert: 89, 18, 49, 58, 69, 60

14



Double Hashing Collision
Resolution Technique

• Check spots in this order:

 hash(k)

 hash(k) + 1 * hash2(k)

 hash(k) + 2 * hash2(k)

 hash(k) + 3 * hash2(k)

• hash(k) = k

 Result: hash(k) = k mod 10

• hash2(k) = 7 – (k mod 7)

• Insert: 89, 18, 49, 58, 69, 60

15A prime number



Double Hashing THRASHING

• hash(k) = k mod 10 
 Same as the previous slide

 Result: hash(k) = k mod 10
• hash2(k) = (k mod 5) +1

Insert: 10, 12, 14, 16, 18, 36

➢10 mod 10 = 0

➢12 mod 10 = 2

➢14 mod 10 = 4

➢16 mod 10 = 6

➢18 mod 10 = 8

➢36 mod 10 = 6

➢Collision!

➢(36 mod 5)+1 = 2
2 positions from 6 = 8

➢Collision!

➢2 * ((36 mod 5)+1) = 4
4 positions from 8 = 2

➢Collision!

➢. . .

➢

16



Table Size Must Be Prime!

• The table size must always be a prime number

 Thrashing will only occur when the double hash value is a factor of the table size

 The only factors of a prime number p are 1 and p

 It will provide better distribution of the hash keys into the table

 Less clustering, etc.

• A prime number table size does not remove the need for a good hash function!

17



Miscellaneous

18



Rehashing

• Problem: when the table gets too full, running time for operations increases

• Solution: create a bigger table and hash all the items from the original table into the new 

table

 The position in a table is dependent on the table size, which means we have to rehash
each value

 This means we have to re-compute the hash value for each element and insert it into the 
new table!

19



Rehashing

• When to rehash?

 When half full (λ = 0.5)

 When mostly full (λ = 0.75)

 Java's hashtable does this by default

 When an insertion fails

• Cost of rehashing

 We have to do n inserts so worst case Θ(n2) operation!

20



Chaining vs. Linear Probing

21



Removing an Element

• How to handle this?

• You could:

 Rehash upon each delete, which is very expensive

 Put in a 'placeholder' or 'sentinel' value (often assigned to “null”)

 But the table gets filled with these rather fast

 Perhaps rehashing after a certain number of deletes

 Disallow deletes entirely; Not recommended

• Hash tables are not an ideal data structure if you need to perform a lot of deletions

22



23

Deletion Anomaly (delete 14) 

Searching problem…

Couldn’t find 52… 

but 52 is there!

With the sentinel value

(‘d’ pictorially for 

deleted element), 

now 52 can be found!

Oh dear… collision Linear probe to find an

empty slot



Sentinel Value

• When deleting an element, replace it with a “sentinel” element (because when inserting an 

item, you may have stepped over this element to place the item)

 Will lead to deletion anomaly if you delete an element without replacing it with a sentinel. 

• When inserting…

 Can place an element in this sentinel position (as it represents an empty slot)

• When searching…

 Can continue probing once you hit the sentinel position (as it represents a slot that was 
occupied previously) 

 This prevents you from prematurely stopping the search when the item you are 
searching for is further along

24



Deletion Anomaly

25

1. Add John Smith

2. Add Lisa Smith

3. Add Sandra Dee

• Linear Probe to add

4. Add Ted Baker

• Linear Probe to add

5. REMOVE John Smith

6. SEARCH for Sandra Dee

Need to include sentinel value 

when deleting John Smith in 

order to successfully find Sandra 

Dee! 



Other Uses Of Hashing

• Storing passwords: increases security.

• Security of downloads (SHA-2)

• Cryptocurrencies (Hash functions used to verify transactions)

26


