

CS 2100: Data Structures & Algorithms 1

Hash Tables Open Addressing; Analysis on Hashing

Dr. Nada Basit // basit@virginia.edu Spring 2022

Friendly Reminders

- The University updated the mask policy. As per my Request on Mar 28, 2022 (see Collab), I would greatly appreciate if you would do me a kind favor by **continuing to wear your masks** in CS 2100 (Ridley G008). I know it is a lot to ask, and it is **voluntary**, but I appreciate your understanding.
- If you forget your mask (or mask is lost/broken), I have a few available
 - Just come up to me at the start of class and ask!
- No eating or drinking in the classroom, please
- Our lectures will be **recorded** (see Collab) please allow 24-48 hrs to post
- If you feel **unwell**, or think you are, please stay home
 - We will work with you!
 - At home: eye mask instead! Get some rest 😳

Separate Chaining

A Collision Resolution Technique

We Spoke About... Collision Resolution: Separate Chaining

0

Open Addressing

Another Collision Resolution Technique

Saving Memory

• Can we avoid the overhead of all those linked lists?

• Separate Chaining is a great collision resolution technique, but it takes up a lot of **extra space**!

Three Types of Probing Strategies

• **Open Addressing** is a Collision Resolution technique that is sometimes called by its specific type, for example "Linear Probing"

<u>There are three types of probing strategies:</u>

- Linear
- Quadratic
- Double hashing
- The general idea with all of them is that, if a spot is occupied, to 'probe', or try, other spots in the table to use
 - How we determine where else to probe depends on which strategy we are using

Linear Probing Collision Resolution Technique

- If faced with a collision situation, the **linear probing** technique will look into subsequent slots until the first free space is found
 - When probing for an empty slot, we take one "step" at a time, it is called linear probing

- Check spots in this order:
 - hash(k), hash(k)+1, hash(k)+2, etc.
- hash(k) = 3k+7
 - Which is then mod'ed by the table size (10)
 - Result: $hash(k) = (3k+7) \mod 10$
- Insert: 4, 27, 37, 14, 21
 - hash(k) values: 19, 88, 118, 49, 70, respectively

Linear Probing Collision Resolution Technique

- With all open addressing schemes, we examine ('probe') the cells in the order:
 - p₀(k), p₁(k), p₂(k), ...
 - where: p_i(k) = (hash(k) + f(i)) mod table_size
- With linear probing, f(i) = i
 - After searching spot **hash(k)** in the array, look in:
 - hash(k) + 1
 - hash(k) + 2
 - hash(k) + 3
 - etc.

Problems With Linear Probing

- Primary clustering
 - Large blocks of occupied cells
 - As table fills, increased number of attempts required to solve collision
 - And thus, **slower** lookup times
 - "Holes" when an element is removed
 - We'll see how to solve this later
 - When to stop looking?
 - Not always clear.
 - Continue until you find the element (linear search the remainder of the list!)
 - Continue until you get to the end of the structure (when you do not find the target)

Example of Hash Collision Resolution

Hash collision resolved by open addressing with <u>linear probing</u> (interval=1). Note that "Ted Baker" has a unique hash, but nevertheless collided with "Sandra Dee", that had previously collided with "John Smith"

Quadratic Probing Collision Resolution Technique

- With all **open addressing schemes**, we examine (**'probe**') the cells in the order:
 - p₀(k), p₁(k), p₂(k), ...
 - where: p_i(k) = (hash(k) + f(i)) mod table_size
- With quadratic probing, $f(i) = i^2$

• After searching spot **hash(k)** in the array, look in:

- hash(k) + 1^2 = hash(k) + 1
- hash(k) + 2^2 = hash(k) + 4
- hash(k) + 3^2 = hash(k) + 9

• etc.

- Remember, the hash function could be: hash(k) = 3k+7
 - Insert: 4, 27, 37, 14, 21
 - hash(k) values: 19, 88, 118, 49, 70, respectively

Spreads things out a bit more (no large clusters)

Double Hashing Collision Resolution Technique

- With all open addressing schemes, we examine ('probe') the cells in the order:
 - p₀(k), p₁(k), p₂(k), ...
 - where: p_i(k) = (hash(k) + f(i)) mod table_size
- With double hashing, f(i) = i * hash₂(k)
 - Which means we have to define a secondary hash function!
 - After searching spot **hash(k)** in the array, look in:
 - hash(k) + 1 * hash₂(k)
 - hash(k) + 2 * hash₂(k)
 - hash(k) + 3 * hash₂(k)

• etc.

Combine with a *secondary* hash function!

Double Hashing Collision					
Resolution Technique	Table Size = 10 elements Hash₁(key) = key % 10	[0]	49		
• Check spots in this order:	$Hash_2(key) = 7 - (k \% 7)$	[1]			
• hash(k)	Insert keys : 89, 18, 49, 58, 69	[2]			
•hash(k) + 1 * hash ₂ (k) •hash(k) + 2 * <mark>hash₂(k)</mark> •hash(k) + 3 * <mark>hash₂(k)</mark>	Hash(89) = 89 % 10 = 9	[3]	69		
	Hasn(18) = 18% 10 = 8	[4]			
<pre>• hash(k) = k • Result: hash(k) = k mod 10</pre>	Hash(49) = 49 % 10 = 9 a collision ! = 7 – (49 % 7) = 7 positions from [9]	[5]			
• hash ₂ (k) = 7 – (k mod 7) • Insert: 89, 18, 49, 58, 69, 60	Hash(58) = 58 % 10 = 8	[6]			
	= 7 – (58 % 7) = 5 positions from [8]	[7]	58		
	Hash(69) = 69 % 10 = 9	[8]	18		
	= 7 – (69 % 7) = 1 position from [9]	[9]	89		

Double Hashing Collis	ion		
Resolution Technique	Table Size = 10 elements Hash1(key) = key % 10	[0]	49
• Check spots in this order:	$Hash_2(key) = 7 - (k \% 7)$	[1]	
• hash(k)	Insert keys: 89, 18, 49, 58, 69	[2]	
•hash(k) + 1 * hash ₂ (k) •hash(k) + 2 * <mark>hash₂(k)</mark>	Hash(89) = 89 % 10 = 9 Hash(18) = 18 % 10 = 8	[3]	69
<pre>• hash(k) + 3 * hash₂(k)</pre>	Hash(10) = 10.76 10 = 0	[4]	
<pre>• hash(k) = k • Result: hash(k) = k mod 10</pre>	Hash(49) = 49 % 10 = 9 a collision ! = 7 – (49 % 7) = 7 positions from [9]	[5]	
• <pre>hash2(k) = 7 - (k mod 7)</pre>	Hash(58) = 58 % 10 = 8	[6]	
	= 7 – (58 % 7) = 5 positions from [8]	[7]	58
• Insert: 89, 18, 49, 58, 69, 60	Hash(69) = 69 % 10 = 9	[8]	18
A prime number	= 7 – (69 % 7) = 1 position from [9]	[9]	89

Double Hashing THRASHING

hash(k) = k mod 10
Same as the previous slide
Result: hash(k) = k mod 10
hash₂(k) = (k mod 5) +1

Insert: 10, 12, 14, 16, 18, 36

 $>10 \mod 10 = 0$

 $>12 \mod 10 = 2$

 $>14 \mod 10 = 4$

 $>16 \mod 10 = 6$

 $>18 \mod 10 = 8$

>36 mod 10 = 6
>Collision!
>(36 mod 5)+1 = 2
2 positions from 6 = 8
>Collision!
>2 * ((36 mod 5)+1) = 4
4 positions from 8 = 2
>Collision!
>...

•••• It never lands

It never lands on an empty slot; the hash function keeps <u>thrashing</u> in attempt to find a slot to place the key.

Table Size Must Be Prime!

- The table size must always be a prime number
 - Thrashing will only occur when the double hash value is a *factor* of the table size
 - The only factors of a prime number p are 1 and p
 - It will provide better distribution of the hash keys into the table
 - Less clustering, etc.
- A prime number table size does not remove the need for a good hash function!

Miscellaneous

Rehashing

- **Problem**: when the table gets too full, running time for operations increases
- Solution: create a bigger table and hash all the items from the original table into the new table
 - The position in a table is dependent on the **table size**, which means we have to **rehash** each value
 - This means we have to **re-compute** the hash value for each element and **insert** it into the new table!

Rehashing

- When to rehash?
 - When half full ($\lambda = 0.5$)
 - When mostly full ($\lambda = 0.75$)
 - Java's **hashtable** does this by default
 - When an insertion fails
- Cost of rehashing
 - We have to do *n* inserts so worst case $\Theta(n^2)$ operation!

Chaining vs. Linear Probing

Removing an Element

- How to handle this?
- You could:
 - Rehash upon each delete, which is very **expensive**
 - Put in a 'placeholder' or 'sentinel' value (often assigned to "null")
 - But the table gets filled with these rather fast
 - Perhaps rehashing after a certain number of deletes
 - Disallow deletes entirely; *Not recommended*
- Hash tables are not an ideal data structure if you need to perform a lot of deletions

Sentinel Value

- When <u>deleting</u> an element, **replace** it with a "**sentinel**" element (because when inserting an item, you may have stepped over this element to place the item)
 - Will lead to deletion anomaly if you delete an element without replacing it with a sentinel.
- When <u>inserting</u>...
 - Can place an element in this sentinel position (as it represents an empty slot)
- When <u>searching</u>...
 - Can **continue probing** once you hit the sentinel position (as it represents a slot that was occupied previously)
 - This prevents you from prematurely stopping the search when the item you are searching for is further along

Deletion Anomaly

- 1. Add John Smith
- 2. Add Lisa Smith
- 3. Add Sandra Dee
 - Linear Probe to add
- 4. Add Ted Baker
 - Linear Probe to add
- 5. REMOVE John Smith
- 6. SEARCH for Sandra Dee

Need to include **sentinel value** when deleting John Smith in order to successfully find Sandra Dee!

Other Uses Of Hashing

- Storing passwords: increases security.
- Security of downloads (SHA-2)
- Cryptocurrencies (Hash functions used to verify transactions)