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Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see 
Collab), I would greatly appreciate if you would do me a kind favor by continuing 
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is 
voluntary, but I appreciate your understanding. 

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺
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Hash Tables
An Introduction to Hash Tables

3



We Thought We Found The Answer

• Recall the linear search algorithm? 

 We learned that we have to go through every entry one by one to find the desired item. 
Time complexity: O(n)

 It’s boring and time consuming!

• When searching an ordered list, we thought we had found the answer. What was more 

efficient? Binary search algorithm

 In a sorted list, using binary search, the search is very fast (in comparison!) Time 
complexity:  O(log(n))

• Increasing the size of the data, changed the search time very slightly
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• How about if we can find an item in an array, almost, without search?

• What if we could type our search key and our algorithm takes us directly to the item 

we are looking for?

• No need to search through all the items:   0 to n-1 

• Such a magical data structure DOES exist, it’s called a Hash Table

“Magical” Data Structure
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The Kind Of Data Is Stored?

• Hash tables store key-value pairs

 Each value has a specific key associated with it

 The value portion doesn’t need to be a single item:

 Example: CID,{FN, LN, Age, Major, Year, …}

 Keys and values need not be the same type!

 Example: Definitions: “set”, “1. To put in a specified position...”
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What Is A Hash Table?

• A hash table (also hash map) is a data structure used to implement an associative array, a 

structure that can map keys to values

 A hash table contains a fixed size array (like vector). It is resized when necessary. 

• A hash table uses a hash function to compute an index into an array of buckets or slots, 

from which the correct value can be found

 Key passes through a hash function

 Hash function input: key

 Hash function output: index into the array (where the value is stored)

• A hash table can be searched for an item in O(1) time! (Constant time!) 7



What Is A Hash Function? 

• Hash function: a function which, when applied to the key (any Java Object), produces an 

[unsigned integer value mod length-of-table] – an integer which can be used as an address

in a hash table (index into an array of buckets)

• Hash functions have three required properties:

1. Must be deterministic [minimum requirement]

2. Must be fast

3. Must be evenly distributed
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What Is A Hash Index?

• Hash Index: A hash index organizes the search keys with their associated pointers into a 

hash file. It consists of a collection of buckets organized in an array. Through linked lists, 

multiple items can be associated with one index because of this Hash indices are often 

called buckets
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Hash Functions – Raise Your Hand If…

• I’m going to hash all of you into 10 buckets (0-9) by your birthday. (e.g., Nov. 18, 2001)

• The hash functions:

• By the decade of your birth year

• hash(birthday) = (year/10) % 10 2001/10 % 10 = 0.1 = 0 (hash index)
1982/10 % 10 = 8.2 = 8
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Hash Functions – Raise Your Hand If…

• I’m going to hash all of you into 10 buckets (0-9) by your birthday. (e.g., Nov. 18, 2001)

• The hash functions:

• By the decade of your birth year

• hash(birthday) = (year/10) % 10

• By the last digit of your birth year

• hash(birthday) = year % 10 2001 % 10 = 1
1982 % 10 = 2
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Hash Functions – Raise Your Hand If…

• I’m going to hash all of you into 10 buckets (0-9) by your birthday. (e.g., Nov. 18, 2001)

• The hash functions:

• By the decade of your birth year

• hash(birthday) = (year/10) % 10

• By the last digit of your birth year

• hash(birthday) = year % 10

• By the last digit of your birth month

• hash(birthday) = month % 10 11 % 10 = 1 
7 % 10 = 7
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Note: 

Nov and Jan: same hash (1); 

Dec and Feb: same hash (2).



Hash Functions – Raise Your Hand If…

• I’m going to hash all of you into 10 buckets (0-9) by your birthday. (e.g., Nov. 18, 2001)

• The hash functions:

• By the decade of your birth year

• hash(birthday) = (year/10) % 10

• By the last digit of your birth year

• hash(birthday) = year % 10

• By the last digit of your birth month

• hash(birthday) = month % 10

• By the last digit of your birth day

• hash(birthday) = day % 10 18 % 10 = 8
23 % 10 = 3
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Hash Functions In Java

• Let’s look at Java Object API

 https://docs.oracle.com/javase/10/docs/api/java/lang/Object.html

 Specifically: https://docs.oracle.com/javase/10/docs/api/java/lang/Object.html#hashCode()

• There is a method for this!!
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Hashing Example (1)

• Key space: integers 

• Table size: 10 

• hash(k) = k mod 10

 Technically, hash(k) = k,  which is then mod'ed by the table size of 10

• Insert: 7, 18, 41, 34

• How do we find them?
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Hashing Example (2)

• Key space: integers 

• Table size: 6 

• hash(k) = k mod 6

 Size of the hash table is 6 (indices 0 through 5)

• Insert: 7, 18, 41, 34

• How do we find them?
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Hash Functions

• Required properties described earlier:

1. Must be deterministic [minimum requirement]

2. Must be fast

3. Must be evenly distributed

• A uniform hash: when the indices produced by the hash function (into an array) are

equally likely to be generated

 This implies avoiding collisions

• A “perfect”/ “ideal” hash function:

 Will assign each key to a unique bucket (index)

 No blanks (i.e. no empty cells)

 No collisions 17

Rarely achievable 

in practice!



Hash Function Notes

• They should always return an unsigned int

 Otherwise, your program will be trying to find a negative array index

• Integer overflow is fine, as long as it overflows deterministically

 Meaning the same way each time (how you handle a ‘full’ bucket)

• As mentioned, the ideal situation is rarely achievable in practice. 

 Instead, most hash table designs assume that hash collisions –different keys that 
are assigned by the hash function to the same bucket– will occur and must be 
accommodated in some way
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Hash Function Notes

• In a well-dimensioned hash table, the average cost (number of instructions) for each lookup 

is independent of the number of elements stored in the table. 

• In many situations, hash tables turn out to be more efficient than search trees or any other 

table lookup structure!

• For this reason, they are widely used in many kinds of computer software, particularly for 

associative arrays, database indexing, caches, and sets
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Collision Resolution

• Hash collision: when different keys are hashed (via a hash function) to the same index/ 

bucket (same location in the hash table)

• Two primary ways to resolve collisions:

 Separate Chaining (make each spot in the table a 'bucket' or a collection)

 Open Addressing, of which there are 3 types:

 Linear probing

 Quadratic probing

 Double hashing
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Separate Chaining
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Separate Chaining Example (1)

• All keys that map to the same hash value are kept in a “bucket”

 This “bucket” is another data structure, typically a linked list

• Table size: 10 

• hash(k) = k mod 10

• Insert: 
10, 22, 107, 12, 42
(0)   (2)      (7)      (2)    (2)   

220 1 2 3 4 5 6 7 8 9



Analysis of Find

• Definition: The load factor, λ, of a hash table is the ratio of the number of elements 

divided by the table size

• For separate chaining, λ is the average number of elements in a bucket

 Average time on unsuccessful find: λ

 Average length of a list at hash(k)

 Average time on successful find: ~ (λ/2)

 Half the average length of a list (not including the item)
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Load Factor

• How big should we make the hash table?

• Possible sizes for hash table with separate chaining

 λ = 1

 Make hash table be the number of elements expected; average bucket size is 1

 λ = 0.75

 Good trade-off between memory use and time

 λ = 0.5

 Uses more memory, but fewer collisions
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Separate Chaining: Find()

• Given we keep several keys in one bucket when collisions happen, we have to store both 

the key as well as the value!

• What is the worst case?

 In the worst case, every key could hash to the same spot!

 This means it will be a Θ(n) algorithm to perform a find!

• What is the "hopeful" case?
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What Data Structure To Use For The Buckets?

• AVL & red-black trees will give the best running time

 But that's a lot of overhead!

• Vectors are easier, but take up a lot of space

 All those extra, unused, cells

 Don't ever use vectors for this! ☺

• Linked lists are easy, and take up very little space

 That's Θ(n)!

 Still faster in practice than trees due to having a very small number of items in the bucket
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Requirements For The “Hopeful” Case

• Our ideal hash function and hash table:

 Function hash(k) is well distributed for key space

 For a randomly selected k ∈ K,

 probability(hash(k) = i) = 1/table_size

 Size of table scales linearly with number of elements

 Expected bucket size is Θ(num_elements / table_size)

• Finding a good hash function can be tough (Remember ideal hash functions rarely exist!)

→

→

→
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Separate Chaining Insert Is Θ(1)

• In an unsorted linked list, you can just put the newly inserted key on the front

• So, all inserts into a separate chained hash table, that uses linked lists, are actually in

constant time

 If you insert at the head and you allow duplicates: constant time

 If you insert at the head and you do NOT allow duplicates: linear time (to check)

 If you were to sort the linked list, that would be linear time

 And finds (and thus deletes) are still linear time
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