
CS 2100: Data Structures & Algorithms 1

Hash Tables
ADTs So Far; Sets and Maps in Java

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

ADTs So Far
An overview of the Abstract Data Types we have seen so far

3

ADTs We Have Seen So Far

• Lists

• Stacks

• Queues

• Trees

4

Lists

• Operations:

 find

 insert

 remove

 findKth

• Implementations

 Array (vector)

 Linked list

5

Stacks

• List with data handled last-in first-out

• Operations:

 push

 pop

 top

• Implementations

 Array (vector)

 Linked list

6

Queues

• First-in first-out list

• Operations:

 enqueue

 dequeue

• Implementations

 Array (vector)

 Linked lists

7

Trees

• Goal is Θ(log n) runtime for most operations

 Binary search trees

 AVL Trees

 Red-black trees

 Splay trees – a self-balancing BST (main idea: bring recently accessed items to the root of the tree,
making recently searched items accessible in O(1) time if accessed again. In a typical application, 80% of
the access are to 20% of the items

•

8

Is There Anything Faster?

• Fastest possible search using binary comparison: Θ(log n)

• We can do better: (almost) constant (Θ(1)) is possible with hash tables!

• Hash tables (lookup table)

 Standard set of operations: find, insert, delete

 No ordering property!

 Thus, no findMin or findMax

9

Aside:
Sets and Maps
Introduction to the Set and Map data structures

10

11

https://www.codejava.net/java-

core/collections/overview-of-java-

collections-framework-api-uml-

diagram

Map

List

Set

11

https://www.codejava.net/java-core/collections/overview-of-java-collections-framework-api-uml-diagram

Two New Abstract Data Types (ADTs)

• Set: Any data structure that stores a bunch of unordered elements

 Insert/retrieve done using the element itself (e.g., insert(data))

 No duplicate values allowed in sets

• Map: Any data structure that stores key-value pairs

 insert and retrieve by key. e.g., insert("oranges", 2.95);

 retrieve("oranges") returns 2.95

 No duplicate keys allowed

12

Two New Abstract Data Types (ADTs) :: SETs

• Set: Methods include:

 add(data), find(data), remove(data)

 No real concept of indexing like a list

• Set implementation examples:

 Trees(BST, etc.); Java has a TreeSet class

 Requires .compareTo() method

 Hash Tables; Java has a HashSet class

 Requires .equals() method

 Also requires .hashCode() method

13

Think: marbles in a bag!

(unique, marbles!)

Two New Abstract Data Types (ADTs) :: MAPs

• Map: Methods include:

 put(key, T data), T get(key), T remove(key)

 No real concept of indexing like a list

• Map implementation examples:

 Trees(BST, etc.); Java has a TreeMap class

 Requires .compareTo() method

 Hash Tables; Java has a HashMap class

 Requires .equals() method

 Also requires .hashCode() method

14

Keys with their

associated values

(e.g. name to phone #)

Which ADT is Hash Table?

• A hash table (we will see next lecture!) can be used to implement a Map or a Set

• In this class, we will usually use the latter (easier to show examples) but sometimes use

either.

15

Aside:
Sets and Maps - Examples
Some Set and Map Java Examples

16

SETS

17

Looping over a Set (using for-each loop)

• Does not allow for positional access. There are no indices in a Set but you can still loop

over each of the elements of a Set using a for-each loop:

// Create a set (a HashSet) called “mySet”

Set<String> mySet = new HashSet<String>();

// Assuming we populate mySet with String values…

// Loop through mySet and print out each of the elements:

for (String ele : mySet) { // using a for-each loop!

System.out.println(ele);

}
18

TreeSet

• The “tree” refers to type of data structure used

• Bonus! Prints in “correct” (sorted) order

• Items maintained in order to avoid duplicates

HashSet

• Uses a “hash” or unique number for each item to avoid duplicates (no order guarantee)

TreeSet and HashSet

19

Set - Methods

• Some Set behaviors

 boolean add(elem) – returns false if already there

 boolean remove(elem) – returns false if not there

• What’s nice here: (returns false if can’t, true otherwise)

 Try to add something that’s already there?
Remove something that’s not there? No problem!

 It basically ignores that attempt! Doesn’t throw error. Returns false.

20

Example using add()

TreeSet<String> aSet = new TreeSet<String>();

ArrayList<String> cities = new ArrayList<String>();

// assume contents:
{ “Paris”, “Amsterdam”, “London”, “Lisbon”, “Paris”,

“Vienna”, “Prague”, “Rome”, “London” }

// What’s a quick way to remove duplicates from “cities”?

for(String city : cities) {

aSet.add(city); // duplicates will be removed! Done!

}

Sets use generics – they type in <>’s has to be an object type
21

TreeSet Example

// Create a TreeSet of Integers

TreeSet<Integer> tree = new

TreeSet<Integer>();

// Add some elements

tree.add(12);

tree.add(63);

tree.add(34);

tree.add(45);

// Displaying the Tree set data

// Notice: elements are printed in

// SORTED order! (Not by accident!)

// It’s a property of the “Tree” Set

System.out.print(“Tree set data: ”);

// for-each loop to print

for(Integer ele : tree) {

System.out.print(ele + “ ”);

}

Output:
Tree set data: 12 34 45 63 22

TreeSet Example – other handy methods

// Create a TreeSet of Integers

TreeSet<Integer> tree = new

TreeSet<Integer>();

// Add some elements

tree.add(12);

tree.add(63);

tree.add(34);

tree.add(45);

int target = 34;

// What if I wanted to check if a
valued existed within the set?

if(tree.contains(target)) {

System.out.print(“Found!”);

}

else

System.out.print(“Not Found!”);

// You can use CONTAINS() method!

// No need for a loop (see above).

// To check if something is NOT

// contained (doesn’t exist in set):
if(!tree.contains(target)) {...}

23

MAPS

24

Important Map Methods

• Keys and values

 put(key, value), get(key), remove(key) – see next slide for details

 containsKey(key), containsValue(value)

• Important / useful:

 keySet() // returns a Set of keys

 values() // returns a Collection of values

• Others methods too! See Java API for more.

25

More Details on Map Methods

• put(key, value) – stores new data for the key

 If key is not in the map – makes new entry for it

 If key is in the map – replaces the old data associated with the key

 (is like “add” or “replace”)

• get(key) – retrieves the data (value) based on the key

• remove(key) – removes a key-value pair

 Just call remove with the key (don’t have to pass the value)

•

26

More Details on Map Methods

• Remember map declarations need data types for both the key and value

• e.g. HashMap<String, Cat> catsMap = new HashMap<String, Cat>();

• Add to the map using .put()

Cat tiggerObj = new Cat();

catsMap.put(“Tigger”, tiggerObj);

• Get from the map using .get()

Cat tiggerObj = catsMap.get(“Tigger”); //get on the key

27

Maps

• Map keys can be any object

(as long as it meets the requirements for a type of map used)

HashMap<Dog, Person> dogsPerson = new HashMap<Dog,Person>();

Dog lucyObj = new Dog();

Person fred = new Person();

dogsPerson.put(lucyObj, fred);

Person p = dogsPerson.get(lucyObj);

28

HashMap Example

// Create a HashMap with a

// String Key and Integer Value

HashMap<String, Integer> vehicles = new
HashMap<String, Integer>();

// Add some vehicles

// (Key-Value pairs are:

// Vehicle and number of each vehicle)

vehicles.put("BMW", 5);

vehicles.put("Mercedes", 3);

vehicles.put("Audi", 4);

vehicles.put("Ford", 10);

// How many items in the HashMap? (4)

System.out.println("Total vehicles: " +
vehicles.size());

// Iterate over all vehicles,

// using the keySet method.

// for-each loop comes in handy!

for(String key: vehicles.keySet())

System.out.println(

key + " - " + vehicles.get(key));

System.out.println();

// Using get(), provide the Key,

// receive the associated Value (4 Audi cars)

String searchKey = "Audi";

if(vehicles.containsKey(searchKey))

System.out.println("Found total " +

vehicles.get(searchKey) + " " +

searchKey + " cars!\n");

29

Output of previous code:

Total vehicles: 4
Audi - 4
Ford - 10
Mercedes - 3
BMW - 5

Found total 4 Audi cars!

Gives you the value:

vehicles.get(searchKey)

30

