
CS 2100: Data Structures & Algorithms 1

Hash Tables
ADTs So Far; Sets and Maps in Java

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

ADTs So Far
An overview of the Abstract Data Types we have seen so far

3

ADTs We Have Seen So Far

• Lists

• Stacks

• Queues

• Trees

4

Lists

• Operations:

 find

 insert

 remove

 findKth

• Implementations

 Array (vector)

 Linked list

5

Stacks

• List with data handled last-in first-out

• Operations:

 push

 pop

 top

• Implementations

 Array (vector)

 Linked list

6

Queues

• First-in first-out list

• Operations:

 enqueue

 dequeue

• Implementations

 Array (vector)

 Linked lists

7

Trees

• Goal is Θ(log n) runtime for most operations

 Binary search trees

 AVL Trees

 Red-black trees

 Splay trees – a self-balancing BST (main idea: bring recently accessed items to the root of the tree,
making recently searched items accessible in O(1) time if accessed again. In a typical application, 80% of
the access are to 20% of the items

•

8

Is There Anything Faster?

• Fastest possible search using binary comparison: Θ(log n)

• We can do better: (almost) constant (Θ(1)) is possible with hash tables!

• Hash tables (lookup table)

 Standard set of operations: find, insert, delete

 No ordering property!

 Thus, no findMin or findMax

9

Aside:
Sets and Maps
Introduction to the Set and Map data structures

10

11

https://www.codejava.net/java-

core/collections/overview-of-java-

collections-framework-api-uml-

diagram

Map

List

Set

11

https://www.codejava.net/java-core/collections/overview-of-java-collections-framework-api-uml-diagram

Two New Abstract Data Types (ADTs)

• Set: Any data structure that stores a bunch of unordered elements

 Insert/retrieve done using the element itself (e.g., insert(data))

 No duplicate values allowed in sets

• Map: Any data structure that stores key-value pairs

 insert and retrieve by key. e.g., insert("oranges", 2.95);

 retrieve("oranges") returns 2.95

 No duplicate keys allowed

12

Two New Abstract Data Types (ADTs) :: SETs

• Set: Methods include:

 add(data), find(data), remove(data)

 No real concept of indexing like a list

• Set implementation examples:

 Trees(BST, etc.); Java has a TreeSet class

 Requires .compareTo() method

 Hash Tables; Java has a HashSet class

 Requires .equals() method

 Also requires .hashCode() method

13

Think: marbles in a bag!

(unique, marbles!)

Two New Abstract Data Types (ADTs) :: MAPs

• Map: Methods include:

 put(key, T data), T get(key), T remove(key)

 No real concept of indexing like a list

• Map implementation examples:

 Trees(BST, etc.); Java has a TreeMap class

 Requires .compareTo() method

 Hash Tables; Java has a HashMap class

 Requires .equals() method

 Also requires .hashCode() method

14

Keys with their

associated values

(e.g. name to phone #)

Which ADT is Hash Table?

• A hash table (we will see next lecture!) can be used to implement a Map or a Set

• In this class, we will usually use the latter (easier to show examples) but sometimes use

either.

15

Aside:
Sets and Maps - Examples
Some Set and Map Java Examples

16

SETS

17

Looping over a Set (using for-each loop)

• Does not allow for positional access. There are no indices in a Set but you can still loop

over each of the elements of a Set using a for-each loop:

// Create a set (a HashSet) called “mySet”

Set<String> mySet = new HashSet<String>();

// Assuming we populate mySet with String values…

// Loop through mySet and print out each of the elements:

for (String ele : mySet) { // using a for-each loop!

System.out.println(ele);

}
18

TreeSet

• The “tree” refers to type of data structure used

• Bonus! Prints in “correct” (sorted) order

• Items maintained in order to avoid duplicates

HashSet

• Uses a “hash” or unique number for each item to avoid duplicates (no order guarantee)

TreeSet and HashSet

19

Set - Methods

• Some Set behaviors

 boolean add(elem) – returns false if already there

 boolean remove(elem) – returns false if not there

• What’s nice here: (returns false if can’t, true otherwise)

 Try to add something that’s already there?
Remove something that’s not there? No problem!

 It basically ignores that attempt! Doesn’t throw error. Returns false.

20

Example using add()

TreeSet<String> aSet = new TreeSet<String>();

ArrayList<String> cities = new ArrayList<String>();

// assume contents:
{ “Paris”, “Amsterdam”, “London”, “Lisbon”, “Paris”,

“Vienna”, “Prague”, “Rome”, “London” }

// What’s a quick way to remove duplicates from “cities”?

for(String city : cities) {

aSet.add(city); // duplicates will be removed! Done!

}

Sets use generics – they type in <>’s has to be an object type
21

TreeSet Example

// Create a TreeSet of Integers

TreeSet<Integer> tree = new

TreeSet<Integer>();

// Add some elements

tree.add(12);

tree.add(63);

tree.add(34);

tree.add(45);

// Displaying the Tree set data

// Notice: elements are printed in

// SORTED order! (Not by accident!)

// It’s a property of the “Tree” Set

System.out.print(“Tree set data: ”);

// for-each loop to print

for(Integer ele : tree) {

System.out.print(ele + “ ”);

}

Output:
Tree set data: 12 34 45 63 22

TreeSet Example – other handy methods

// Create a TreeSet of Integers

TreeSet<Integer> tree = new

TreeSet<Integer>();

// Add some elements

tree.add(12);

tree.add(63);

tree.add(34);

tree.add(45);

int target = 34;

// What if I wanted to check if a
valued existed within the set?

if(tree.contains(target)) {

System.out.print(“Found!”);

}

else

System.out.print(“Not Found!”);

// You can use CONTAINS() method!

// No need for a loop (see above).

// To check if something is NOT

// contained (doesn’t exist in set):
if(!tree.contains(target)) {...}

23

MAPS

24

Important Map Methods

• Keys and values

 put(key, value), get(key), remove(key) – see next slide for details

 containsKey(key), containsValue(value)

• Important / useful:

 keySet() // returns a Set of keys

 values() // returns a Collection of values

• Others methods too! See Java API for more.

25

More Details on Map Methods

• put(key, value) – stores new data for the key

 If key is not in the map – makes new entry for it

 If key is in the map – replaces the old data associated with the key

 (is like “add” or “replace”)

• get(key) – retrieves the data (value) based on the key

• remove(key) – removes a key-value pair

 Just call remove with the key (don’t have to pass the value)

•

26

More Details on Map Methods

• Remember map declarations need data types for both the key and value

• e.g. HashMap<String, Cat> catsMap = new HashMap<String, Cat>();

• Add to the map using .put()

Cat tiggerObj = new Cat();

catsMap.put(“Tigger”, tiggerObj);

• Get from the map using .get()

Cat tiggerObj = catsMap.get(“Tigger”); //get on the key

27

Maps

• Map keys can be any object

(as long as it meets the requirements for a type of map used)

HashMap<Dog, Person> dogsPerson = new HashMap<Dog,Person>();

Dog lucyObj = new Dog();

Person fred = new Person();

dogsPerson.put(lucyObj, fred);

Person p = dogsPerson.get(lucyObj);

28

HashMap Example

// Create a HashMap with a

// String Key and Integer Value

HashMap<String, Integer> vehicles = new
HashMap<String, Integer>();

// Add some vehicles

// (Key-Value pairs are:

// Vehicle and number of each vehicle)

vehicles.put("BMW", 5);

vehicles.put("Mercedes", 3);

vehicles.put("Audi", 4);

vehicles.put("Ford", 10);

// How many items in the HashMap? (4)

System.out.println("Total vehicles: " +
vehicles.size());

// Iterate over all vehicles,

// using the keySet method.

// for-each loop comes in handy!

for(String key: vehicles.keySet())

System.out.println(

key + " - " + vehicles.get(key));

System.out.println();

// Using get(), provide the Key,

// receive the associated Value (4 Audi cars)

String searchKey = "Audi";

if(vehicles.containsKey(searchKey))

System.out.println("Found total " +

vehicles.get(searchKey) + " " +

searchKey + " cars!\n");

29

Output of previous code:

Total vehicles: 4
Audi - 4
Ford - 10
Mercedes - 3
BMW - 5

Found total 4 Audi cars!

Gives you the value:

vehicles.get(searchKey)

30

