
CS 2100: Data Structures & Algorithms 1

Advanced Sorts (Part II)
Quicksort; Discussion on Hybrid Algorithms

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

{Reminder} How to Sort?

• Some “straightforward” sorting algorithms


 Each is O(n2)

• More efficient sorting algorithms


 Each is O(n log n)

3

Quicksort
Another divide-and-conquer style algorithm

4

Quicksort Introduction

• Similar to Mergesort, except the “work” is done during the dividing instead of in the

merging

• Is recursive

• Another example of a divide-and-conquer algorithm

5

Quicksort: Overall Idea

• Idea: Select an item in the list to be a pivot value.

• Divide the list into two halves

1. Items less than pivot and recursively sort

2. Items greater than pivot and recursively sort

• "merge" by concatenating lessList,pivot,greaterList

• return

6

7

Quicksort
Quicksort Pseudo-Code:

i <-- low index in array
j <-- high index in array

Example call (assume “list” is array):
quickSort(list, 0, size - 1);

Quicksort: Partition

• Partition is responsible for:

 Selecting a pivot value

 re-arranging list so that

 pivot in correct place

 items less than pivot are below

 items greater than pivot are above

• Two approaches:

 Hoare's Partition

 Lomuto's Partition

8

Quicksort: Lomuto’s Partition

• Strategy:

 Increment k, look at A[k]

 If A[k] > pivot, all is well

 Otherwise, h++ and swap k and h

 When done, swap h and pivot to place pivot in correct spot

 Done? Unexamined portion disappears (k gets to end),

 and h divides items < pivot and items > pivot 9

Quicksort: Lomuto’s Partition

• Strategy:

 Increment k, look at A[k]

 If A[k] > pivot, all is well

 Otherwise, h++ and swap k and h

 When done, swap h and pivot to place pivot in correct spot

 Done? Unexamined portion disappears (k gets to end),

 and h divides items < pivot and items > pivot 10

4 6 1 7 0 5

h k

Quicksort: Hoare’s Partition

• Strategy:

 Move low up until something > pivot found

 Move high down until something <= pivot found

 Swap items at low and high

 When done, swap items at high and pivot to put pivot in place

11

Quicksort: Hoare’s Partition

• Strategy:

 Move low up until something > pivot found

 Move high down until something <= pivot found

 Swap items at low and high

 When done, swap items at high and pivot to put pivot in place

12

4 6 1 7 0 5

low high

Analysis of Quicksort

• It is in-place (if you don't count the recursive bookkeeping)

 It doesn't use scratch array like mergesort usually does

• Same runtime analysis as mergesort

 T(n) = 2T(n/2)+n = Θ(nlog(n))

 Caveat to this: See next slide

13

Analysis of Quicksort: Worst Case

• Technically, we could pick a very bad pivot every time.

 A bad pivot means the list isnot split in half. Worst case split into sizes 0 and n-1

• So T(n) = T(n-1) + n = Θ(n2)

• This is NOT VERY LIKELY

 In addition, some advanced techniques can be used to ensure it never happens.

14

Lower Bound Proof

15

Discussion:
Best Sorting Algorithm: Decision Tree

16

Discussion:
Best Sorting Algorithm: Decision Tree

• The "best" decision tree must exist (i.e., there is SOME best algorithm)

• The number of leaves L >= n!

 Because list has n! permutations

• So, the height of the "best" decision tree is the best possible runtime for a sorting algorithm.

• For a binary tree, L <= 2h

 L is number of leaves

 h is height of tree

• Solve for h:

 h >= log2(n!)

17

Discussion:
Best Sorting Algorithm: Decision Tree

• For a binary tree, L <= 2h

 L is number of leaves

 h is height of tree

• Solve for h:

 h >= log2(n!)

• For now, just trust me...but:

 log(n!) = Θ(n*log(n))

• Thus, any algorithm that sorts by comparing keys must be Ω(n*log(n))

18

Hybrid Sorts &
Other Sorting Algorithms

19

Hybrid Sorts

• Some sorting algorithms (like Java's internal one) will look at properties of the list and

call different algorithms depending on the situation.

• For example:

 Insertion sort is faster than merge/quick on smaller lists

 Insertion sort is faster on almost sorted lists

• Strategy:

 Switch to insertion sort once recursive calls get small (small could be ~100-150
elements; or even down to 30-50 elements) or on an almost sorted list → speedup!

 You could start with quicksort or mergesort which is log-linear time, and stop when the
size of the list is small (e.g. 30-40) then switch to insertion sort (although quadratic, it is
faster on smaller lists!) In the base case, check if size < threshold (instead of 1) if so, call
insertion sort! 20

Other Sorting Algorithms

• There are MANY more… but to name a few…

• Heap Sort: We haven't seen this data structure, so we will study this a little later

• Radix Sort: Uses values of digits to sort numbers very quickly.

• TimSort: What Java Collections.sort() uses

• ...and many others.

21

