[UNIVERSITY
I\/IRGINIA

CS 2100: Data Structures & Algorithms 1

Advanced Sorts (Part I)

Mergesort; divide and conquer

Dr. Nada Basit// basit@virginia.edu
Spring 2022

Friendly Reminders

—_— .

- The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). | know it is a lot to ask, and it is

voluntary, but | appreciate your understanding.

- If you forget your mask (or mask is lost/broken), | have a few available
- Just come up to me at the start of class and ask!

- No eating or drinking in the classroom, please
- Our lectures will be recorded (see Collab) — please allow 24-48 hrs to post

- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©

sReminder} How to Sort?

—_— .

- Some “‘straightforward” sorting algorithms
* Insertion Sort, Selection Sort, Bubble Sort

- Each is O(n?)

- More efficient sorting algorithms
* Quicksort, Mergesort, Heapsort Best Sorts are O(n log m)
- Each is O(n log n)

sReminder} Sorting using Collections.sort()

- Collections and Arrays classes provide .sort() methods!

- Utilizes compareTo() or Comparator to determine order when comparing
elements

- “under the hood”, it’s a variant of something called Mergesort
- O(n log n) worst-case -- as good as we can do
- We’ll discuss how Mergesort works soon!

Mergesort

A dinvide- cvnd- conguern style algenitivm

Mergesort Introduction

- General sorting algorithm

« IS recursive

- An example of a divide-and-conquer algorithm

- 1s 0(n?) — strictly faster than n?

- Is faster than the adjacent sorts in most situations
- Bubble sort and Insertion sort were: @(nz)

Divide-and-Conquer

recwive loo
Centaviny algenitiums. fellews this pavadigim; usuwolly they e

Scenario

) |mag|ne you Worke d for the POS t O ﬁlce }.. %»iﬂr ‘-U -,..m\mfuw;umlullmm'lMHlM’IV/II!W/M,'f/Z
e WSS W\ UNITED STATES POSTAL SERVICE

—vanun -
= o

\"/I A .

- One day the automated sorting machine
broke down and you have lots of pieces
of mail to sort! ®

— e SRR RN 7_ ST e i

- If you had 100 pieces of mail to sort, executing a sort algorithm
(e.g. O(n?)) on this one pile of 100 pieces will take 10,000t (t=time)

Divide and Conquer

—_— e ——

- However, sorting 2 piles of 50 would take 2 x 2,500t
- Sorting 4 piles of 25 will take 4 x 645t (2,500t)

- Diving the problem reduced the overhead!

Using recursion to break a problem down into smaller pieces to improve algorithm
performance. (Run each of these smaller pieces in parallel!)

- Binary Search is an example of this.

Divide and Conquer:
putting recursion to work for you!

- An algorithm design strategy, one of many you will learn

- Strategy: It is often easier to solve several small instances of a problem than one
large one.

- divide the problem into k smaller instances of the same problem
- conquer (solve) each the k problems recursively
- combine the solutions to obtain the solution for original input

- Note: Must have a base case to solve really small problems directly

10

General Strategy for Divide and Conquer

Solve(A) // solve for input A
n = size(A) // size of our problem 1s n
// base case
if (n <= smallsize) // problem <= some threshold

solution = directlySolve(A); // solve directly
else // recursive case
divide A into A,, A,, .., A,. // divide
for each 1 in {1, .., R}
S; = solve(A;); // conquer each sub-problem

solution = combine(S,, .., S.); // combine parts
return solution; // return solution to original problem

General Strategy for Divide and Conquer

- Runtime is equal to time to divide + recurse + time to merge

solveProblem(input)
input 1s small, then brute-force
else input is big

divide problem into n smaller problems

recursively solveProblem on smaller problems

merge solutions to small problems into bigger solution
bigger solution

Why Divide and Conquer?

- Sometimes it’s the simplest approach

- Divide and Conquer is often more efficient than “obvious” approaches
- E.g. Binary Search instead of Sequential Search

- E.g. Merge Sort or Quicksort instead of Selection Sort
- Not necessarily efficient: Maybe the same or worse than another approach

- No standard implementation: May or may not be implemented recursively

- Divide and Conquer algorithms illustrate a top-down strategy

- Given a large problem, identify and break into smaller subproblems;
solve then combine the results

[Aside]

Binary Search

Binary Search: Non-Recursive (zfz Jzerative)

int binSearch (int[] array, int target) {
int first = 0; int last = array.length-1;
while (first <= last) {
mid = (first + last) / 2; // calculate middle (‘mid’)
if (target == array[mid]) return mid; //found it!
else if (target < array[mid]) // must be in 15t half
last = mid - 1;
else // must be in 274 half
first = mid + 1
}

return -1; // only got here if not found above

¥

Binary Search: Recursive [pscaa’ocoa’e]

public static int binarySearch(int[] list, int value) {
return binSearch(list, target, 0, list.length -1); // initially entire list is valid
}
public static int binSearch(int[] 1list, int first, int last, int target) {
//Base Case: if no where left to look (if low > high) return (-1)
//Calculate mid (an int)
//Print mid - the item that is being compared

//if mid is equal to target, return mid

//else if mid is less than the target, first = mid + 1 (target is in the top half)

//else (mid is greater than the target), last = mid - 1 (target is in the bottom half)

//return [a recursive call to binSearch, passing values List, first, last, target]

}
- No loop! Recursive calls takes its place - But don’ t think about that if it confuses you!

- Base cases checked first? (Why? Zero items? One item?)

Binary Search: Recursive

- — ., ———

int binSearch(int[] array, int first, int last, int target) {
if (first <= last) {
int mid = (first + last) / 2;
if (target == array[mid])
return mid;
if (target < array[mid])
return binSearch(array, first, mid - 1, target);
else if (target > array[mid]);
return binSearch(array, mid + 1, last, target);

}

return -1;

Merge Sort

Rivide- and-cenguen stvagegy

Algorithm: Mergesort

- Specification:
- Input: Array E and indexes first and last
- Output: Sorted rearrangement of the same elements in E between first & last

- Mergesort Is a classic example of Divide and Conquer:
* Divide: split the array into two halves (left and right / first and last)

* Conguer: call mergesort() to recursively sort the two halves

* Combine: combine the 2 sorted halves into one final sprted array
* This is the “merge” step, and where it gest its name!

[Base case: 1 element (is sorted) or: 2 elements (compare and swap)]

—
e Ba
S
n i hn
AN
HRE I}Iﬂ!

Animation: Mergesort

6 5 3 1 8 7 2 4

q
3
14 7|3 (12|9(l1|6 (2

divide

9111|162

141713112

¥\

pq r

¥\

pgq r

divide

pg r
i]

pq F

Mergesort

/N

p.r

4 5

11

12

14

(divide and
conquer)

FN AN FN

divide

pr

p.r

pr

p.r

11

12

14

'y Xy Yy vy

merge

11

12

14

merge

2161911

12114

3|7

merge

Mergesort: Divide stage

14|73 (12|9]|11]6 |2

divide

9111|162

147|312

¥\

¥\

divide

7

P T
f

4 5

Pq T

T
0 1

PN AN AN SN

divide

p.r

p.r

p.r

p.r

Mergesort: Conquer stage (merge)

p.r p.r p.r pr pr p.r pr pr

14 7 3 12 9 11 6 2
mesge Yy V¥ Ny vy
Pg r Prgq r pg o r Prg r
0 |1 2 3 4 5 6 7
7114 3112 9111 216
merge N ¥ N ¥
P q r P g r
o 1 2 3 4 3 6 7
3| 7112(14 2161911

mcrge \ /

Mergesort: Do it by hand ~ divide and merge stages
6 5 3 1 8 7 2 4

Exercise: Trace Mergesort Execution

- Can you trace MergeSort() on this list? (even # of elements)
< original list; to be sorted (8 elements)

A= {8, 3,2,9 7,1,5, 4},

8,3,2,9 7,1,5/4 < divide into 2 lists of 4

8,3 2,9 7,1 5,4 < divide 2 lists of 4 into 4 lists of 2
8,3297,15,4 < divide into SINGLE items

38 29 1,7 45 < merge single items into pairs
2,3,8,9 1,4,5,7 < merge 4 pairs into 2 lists of 4

{1,2,3,4,5,7,8,9}

< merge 2 lists of 4 into 1 list (Result)

Exercise: Trace Mergesort Execution

- Can you trace MergeSort() on this list? (odd # of elements)
A={8,320971,5,4,6}, < original list; to be sorted (9 elements)

7
7

8.3.2,9
8.3 2,9
8,3,2,97,1,5,4,

< di
< di

<0

Ivide two lists are not even (ok!)
Ivide Into pairs + 1
Ivide into SINGLE items

3,8 29 1,7 45,6
2,3,8,9 1,456,7
{1,2,3,4,5,6,7,8,9}

< merge single items into pairs + 3
< merge
< merge Into 1 list (Result)

Efficiency of Mergesort
{- Mergesortis O(n Ig n) J

same order-class as the most efficient sorts (quicksort and heapsort)

- It 1s more efficient than Selection Sort, Bubble Sort, and Insertion Sort

- The Divide and Conquer approach matters, and in this case, is a “win”’!

- Most of the work 1s done in the “MErge” portion of the algorithm

- Most implementations use a “scratch array”
- An extra array of size n which is then copied back into the original array

Merge part of Mergesort

Merging Sorted Sequences

- Problem:
- Glven two sequences A and B sorted in non-decreasing order, merge them to create one

sorted sequence C
- Input size: C has n items, and A and B have n/2

- Strategy:
- Determine the first item In C: it should be the smaller of the first item in A and the first in

B.
- Suppose it is the first item of A. Copy that to C.
- Then continue merging B with “rest of A” (without the item copieddo C). Repeat!

// sequence A and B; merge into C

] . . .
. // maintain current index of sub-arrays (A & B)
A]‘gorlthm" Merge // and destination array (C)
int a ptr = 0; int b _ptr = 0; 1int c_ptr = ©;
(pSGUdOCOdC) // until end of A or B 1is reached, pick the
// larger among elements pointed to in A and B
’ merge(A, B, C) // and place in correct position in C array
- if (AIs empty) while (a_ptr < A.len & & b _ptr < B.len) {
- append what is leftin Bto C lf(é\E:‘g:H f=A?£b5$:r]‘D {// ele in A smaller
- else If (B IS emptY) a_pEr'++; // increment A pointer
- append what is leftin Ato C } else { // ele in B smaller
. g . . C[c_ptr] = B[b _ptr];
else if (flrstlltem |nA<— first item in B) b ptr++; // increment B pointer
- append first item in Ato C }
- merge (rest of A. B C) c_ptr++; // adjust C pointer for next ele
o }
- else /[first item In B Is smaller // when run out of elements in either A or B
- append firstitemin Bto C // pick up the remaining ele and put into C

while (a_ptr < A.len) // copy rest of A into C

* merge (A, rest of B, C) Cl[c_ptr] = A[a_ptr]; a ptr++; c_ptr++;

return

while (b _ptr < B.len) // copy rest of B into C
C[c_ptr] = B[b_ptr]; b _ptr++; c_ptr++;

subarray -1

o
s o
s oliz
s o
s o

subarray - 2

t

t

t

sorted combined array

Since there are no more elements remaining in the second array, and we know
that both the arrays were sorted when we started, we can copy the remaining
elements from the first array directly.

Images © programiz.com

32

Examining Merge: Sma/l/ Example

. Merge Aand B: A= 3,8 B=2,9 c= {3 t0 hold sorted list

3,8 2,9
38 9
-8 9

I©

- Done!

C={2}

c={2, 3}
c={2, 3, 8}
c={2, 3,8, 9}

Red: elements at head of list
Red Underlined: smallest

(this is the element that gets
added to the sorted list)
Green: rest of items in the list
C: growing sorted list

Mergesort Analysis

—_— e ——

- What is the runtime?
- Divide the list (constant)
- Two recursive sorts
- Merge (linear)

- Total: T(n) =2T(n/2) + n = O(nlog(n))
- Uhhhhh...why?

« How to tell that this is true?
- T(n) =2T(1M/2) + n = O(nlog(n))

- Solve for a closed form (will see In
DSAZ2)

- Draw out tree and count (we did this!)
- Master theorem (nice...will see in DSA2)

Mergesort: Do it by hand ~ divide and merge stages
6 5 3 1 8 7 2 4

Each row has linear work (n) for merge to do

There are log(n) rows 2> n*log(n)

Meregesort Method Signature

—_— e ——

- Typically, Mergesort is done like this instead:

public void mergeSort (T[] , int 1, int j);

- And recursive calls done like this
- Doesn't make new arrays when dividing
- Just ask mergesort to only work on one portion of interest
- merge() still uses scratch array, copies back to list

int mid = (j+1)/2

mergesort(list, 1, mid)
mergesort(list, mid+1, j)

Algorithm: Meregesort

—_— e ——

public static void mergeSort (Element[] E, int first, int last){

if (first < last) { // base case == 1 element
int mid = (first + last)/2; // calculate middle
mergeSort(E, first, mid); // sort first half
mergeSort(E, mid+1, last); // sort second half
merge(E, first, mid, last); // merge two sorted halves
}

¥

