
CS 2100: Data Structures & Algorithms 1

Advanced Sorts (Part I)
Mergesort; divide and conquer

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

{Reminder} How to Sort?

• Some “straightforward” sorting algorithms

 Each is O(n2)

• More efficient sorting algorithms

 Each is O(n log n)

3

{Reminder} Sorting using Collections.sort()

• Collections and Arrays classes provide .sort() methods!

 Utilizes compareTo() or Comparator to determine order when comparing
elements

 “under the hood”, it’s a variant of something called Mergesort

 Θ(n log n) worst-case -- as good as we can do

 We’ll discuss how Mergesort works soon!

4

Mergesort
A divide-and-conquer style algorithm

5

Mergesort Introduction

• General sorting algorithm

• Is recursive

• An example of a divide-and-conquer algorithm

• Is o(n2) – strictly faster than n2

• is faster than the adjacent sorts in most situations

 Bubble sort and Insertion sort were: Θ(n2)

6

Divide-and-Conquer
Certain algorithms follow this paradigm; usually they are recursive too

7

Scenario

• Imagine you worked for the Post Office.

• One day the automated sorting machine

broke down and you have lots of pieces

of mail to sort!

• If you had 100 pieces of mail to sort, executing a sort algorithm

(e.g. O(n2)) on this one pile of 100 pieces will take 10,000t (t=time)

Divide and Conquer

• However, sorting 2 piles of 50 would take 2 x 2,500t

• Sorting 4 piles of 25 will take 4 x 645t (2,500t)

• Diving the problem reduced the overhead!

• Using recursion to break a problem down into smaller pieces to improve algorithm

performance. (Run each of these smaller pieces in parallel!)

• Binary Search is an example of this.

Divide and Conquer:
putting recursion to work for you!

• An algorithm design strategy, one of many you will learn

• Strategy: It is often easier to solve several small instances of a problem than one

large one.

 divide the problem into k smaller instances of the same problem

 conquer (solve) each the k problems recursively

 combine the solutions to obtain the solution for original input

• Note: Must have a base case to solve really small problems directly
10

General Strategy for Divide and Conquer
Solve(A) // solve for input A

n = size(A) // size of our problem is n

// base case

if (n <= smallsize) // problem <= some threshold

solution = directlySolve(A); // solve directly

else // recursive case

divide A into A1, A2, …, Ak. // divide

for each i in {1, …, k}

Si = solve(Ai); // conquer each sub-problem

solution = combine(S1, …, Sk); // combine parts

return solution; // return solution to original problem

General Strategy for Divide and Conquer

• Runtime is equal to time to divide + recurse + time to merge

12

Why Divide and Conquer?

• Sometimes it’s the simplest approach

• Divide and Conquer is often more efficient than “obvious” approaches

 E.g. Binary Search instead of Sequential Search

 E.g. Merge Sort or Quicksort instead of Selection Sort

• Not necessarily efficient: Maybe the same or worse than another approach

• No standard implementation: May or may not be implemented recursively

• Divide and Conquer algorithms illustrate a top-down strategy

 Given a large problem, identify and break into smaller subproblems;
solve then combine the results

Binary Search
Recursive divide-and-conquer strategy

14

Binary Search: Non-Recursive (aka Iterative)

int binSearch (int[] array, int target) {

int first = 0; int last = array.length-1;

while (first <= last) {

mid = (first + last) / 2; // calculate middle (‘mid’)

if (target == array[mid]) return mid; // found it!

else if (target < array[mid]) // must be in 1st half

last = mid - 1;

else // must be in 2nd half

first = mid + 1

}

return -1; // only got here if not found above

}

Binary Search: Recursive [pseudocode]
public static int binarySearch(int[] list, int value) {

return binSearch(list, target, 0, list.length -1); // initially entire list is valid

}

public static int binSearch(int[] list, int first, int last, int target) {

//Base Case: if no where left to look (if low > high) return (-1)

//Calculate mid (an int)

//Print mid – the item that is being compared

//if mid is equal to target, return mid

//else if mid is less than the target, first = mid + 1 (target is in the top half)

//else (mid is greater than the target), last = mid – 1 (target is in the bottom half)

//return [a recursive call to binSearch, passing values list, first, last, target]

}

• No loop! Recursive calls takes its place - But don’t think about that if it confuses you!

• Base cases checked first? (Why? Zero items? One item?)

Binary Search: Recursive

17

Merge Sort
Divide-and-conquer stragegy

18

Algorithm: Mergesort
• Specification:
 Input: Array E and indexes first and last
Output: Sorted rearrangement of the same elements in E between first & last

• Mergesort is a classic example of Divide and Conquer:
•
•
•
•

19

20Images © programiz.com

Animation: Mergesort

21

Mergesort
(divide and
conquer)

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

Mergesort: Divide stage

23

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

Mergesort: Conquer stage (merge)

24

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

Mergesort: Do it by hand ~ divide and merge stages
6 5 3 1 8 7 2 4

25

Exercise: Trace Mergesort Execution
• Can you trace MergeSort() on this list? (even # of elements)

A = {8, 3, 2, 9, 7, 1, 5, 4}; original list; to be sorted (8 elements)

8, 3, 2, 9 7, 1, 5, 4 divide into 2 lists of 4

8, 3 2, 9 7, 1 5, 4 divide 2 lists of 4 into 4 lists of 2

8, 3, 2, 9, 7, 1, 5, 4 divide into SINGLE items

3,8 2,9 1,7 4,5 merge single items into pairs

2,3,8,9 1,4,5,7 merge 4 pairs into 2 lists of 4

{1,2,3,4,5,7,8,9} merge 2 lists of 4 into 1 list (Result)
26

Exercise: Trace Mergesort Execution
• Can you trace MergeSort() on this list? (odd # of elements)

A = {8, 3, 2, 9, 7, 1, 5, 4, 6}; original list; to be sorted (9 elements)

8, 3, 2, 9 7, 1, 5, 4, 6 divide two lists are not even (ok!)

8, 3 2, 9 7, 1 5, 4 6 divide into pairs + 1

8, 3, 2, 9, 7, 1, 5, 4, 6 divide into SINGLE items

3,8 2,9 1,7 4,5,6 merge single items into pairs + 3

2,3,8,9 1,4,5,6,7 merge

{1,2,3,4,5,6,7,8,9} merge into 1 list (Result)
27

• Mergesort is O(n lg n)

same order-class as the most efficient sorts (quicksort and heapsort)

• It is more efficient than Selection Sort, Bubble Sort, and Insertion Sort

• The Divide and Conquer approach matters, and in this case, is a “win”!

• Most of the work is done in the “merge” portion of the algorithm

• Most implementations use a “scratch array”

 An extra array of size n which is then copied back into the original array

Efficiency of Mergesort

Merge part of Mergesort

29

Merging Sorted Sequences

• Problem:

 Given two sequences A and B sorted in non-decreasing order, merge them to create one
sorted sequence C

 Input size: C has n items, and A and B have n/2

• Strategy:

 Determine the first item in C: it should be the smaller of the first item in A and the first in
B.

 Suppose it is the first item of A. Copy that to C.

 Then continue merging B with “rest of A” (without the item copied to C). Repeat!30

Algorithm: Merge
(pseudocode)

• merge(A, B, C)

 if (A is empty)

 append what is left in B to C

 else if (B is empty)

 append what is left in A to C

 else if (first item in A <= first item in B)

 append first item in A to C

 merge (rest of A, B, C)

 else // first item in B is smaller

 append first item in B to C

 merge (A, rest of B, C)

 return

// sequence A and B; merge into C
// maintain current index of sub-arrays (A & B)
// and destination array (C)
int a_ptr = 0; int b_ptr = 0; int c_ptr = 0;
// until end of A or B is reached, pick the
// larger among elements pointed to in A and B
// and place in correct position in C array
while (a_ptr < A.len && b_ptr < B.len) {

if(A[a_ptr] <= B[b_ptr]) { // ele in A smaller
C[c_ptr] = A[a_ptr];
a_ptr++; // increment A pointer

} else { // ele in B smaller
C[c_ptr] = B[b_ptr];
b_ptr++; // increment B pointer

}
c_ptr++; // adjust C pointer for next ele

}
// when run out of elements in either A or B
// pick up the remaining ele and put into C
while (a_ptr < A.len) // copy rest of A into C

C[c_ptr] = A[a_ptr]; a_ptr++; c_ptr++;

while (b_ptr < B.len) // copy rest of B into C
C[c_ptr] = B[b_ptr]; b_ptr++; c_ptr++;

32Images © programiz.com

Examining Merge: Small Example

• Merge A and B: A= 3,8 B= 2,9 C= {} to hold sorted list

• 3,8 2,9 C={2}

• 3,8 9 C={2, 3}

• 8 9 C={2, 3, 8}

• 9 C={2, 3, 8, 9}

• Done!

33

Mergesort Analysis

• What is the runtime?

 Divide the list (constant)

 Two recursive sorts

 Merge (linear)

• Total: T(n) = 2T(n/2) + n = Θ(nlog(n))

 Uhhhhh...why?

• How to tell that this is true?

• T(n) = 2T(n/2) + n = Θ(nlog(n))

 Solve for a closed form (will see in
DSA2)

 Draw out tree and count (we did this!)

 Master theorem (nice...will see in DSA2)

34

Mergesort: Do it by hand ~ divide and merge stages
6 5 3 1 8 7 2 4

→

35

Meregesort Method Signature

• Typically, Mergesort is done like this instead:

• And recursive calls done like this

 Doesn't make new arrays when dividing

 Just ask mergesort to only work on one portion of interest

 merge() still uses scratch array, copies back to list

36

Algorithm: Meregesort

public static void mergeSort (Element[] E, int first, int last){

if (first < last) { // base case == 1 element

int mid = (first + last)/2; // calculate middle

mergeSort(E, first, mid); // sort first half

mergeSort(E, mid+1, last); // sort second half

merge(E, first, mid, last); // merge two sorted halves
}

}

