
CS 2100: Data Structures & Algorithms 1

Advanced Sorts (Part I)
Mergesort; divide and conquer

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

{Reminder} How to Sort?

• Some “straightforward” sorting algorithms


 Each is O(n2)

• More efficient sorting algorithms


 Each is O(n log n)

3

{Reminder} Sorting using Collections.sort()

• Collections and Arrays classes provide .sort() methods!

 Utilizes compareTo() or Comparator to determine order when comparing
elements

 “under the hood”, it’s a variant of something called Mergesort

 Θ(n log n) worst-case -- as good as we can do

 We’ll discuss how Mergesort works soon!

4

Mergesort
A divide-and-conquer style algorithm

5

Mergesort Introduction

• General sorting algorithm

• Is recursive

• An example of a divide-and-conquer algorithm

• Is o(n2) – strictly faster than n2

• is faster than the adjacent sorts in most situations

 Bubble sort and Insertion sort were: Θ(n2)

6

Divide-and-Conquer
Certain algorithms follow this paradigm; usually they are recursive too

7

Scenario

• Imagine you worked for the Post Office.

• One day the automated sorting machine

broke down and you have lots of pieces

of mail to sort! 

• If you had 100 pieces of mail to sort, executing a sort algorithm

(e.g. O(n2)) on this one pile of 100 pieces will take 10,000t (t=time)

Divide and Conquer

• However, sorting 2 piles of 50 would take 2 x 2,500t

• Sorting 4 piles of 25 will take 4 x 645t (2,500t)

• Diving the problem reduced the overhead!

• Using recursion to break a problem down into smaller pieces to improve algorithm

performance. (Run each of these smaller pieces in parallel!)

• Binary Search is an example of this.

Divide and Conquer:
putting recursion to work for you!

• An algorithm design strategy, one of many you will learn

• Strategy: It is often easier to solve several small instances of a problem than one

large one.

 divide the problem into k smaller instances of the same problem

 conquer (solve) each the k problems recursively

 combine the solutions to obtain the solution for original input

• Note: Must have a base case to solve really small problems directly
10

General Strategy for Divide and Conquer
Solve(A) // solve for input A

n = size(A) // size of our problem is n

// base case

if (n <= smallsize) // problem <= some threshold

solution = directlySolve(A); // solve directly

else // recursive case

divide A into A1, A2, …, Ak. // divide

for each i in {1, …, k}

Si = solve(Ai); // conquer each sub-problem

solution = combine(S1, …, Sk); // combine parts

return solution; // return solution to original problem

General Strategy for Divide and Conquer

• Runtime is equal to time to divide + recurse + time to merge

12

Why Divide and Conquer?

• Sometimes it’s the simplest approach

• Divide and Conquer is often more efficient than “obvious” approaches

 E.g. Binary Search instead of Sequential Search

 E.g. Merge Sort or Quicksort instead of Selection Sort

• Not necessarily efficient: Maybe the same or worse than another approach

• No standard implementation: May or may not be implemented recursively

• Divide and Conquer algorithms illustrate a top-down strategy

 Given a large problem, identify and break into smaller subproblems;
solve then combine the results

Binary Search
Recursive divide-and-conquer strategy

14

Binary Search: Non-Recursive (aka Iterative)

int binSearch (int[] array, int target) {

int first = 0; int last = array.length-1;

while (first <= last) {

mid = (first + last) / 2; // calculate middle (‘mid’)

if (target == array[mid]) return mid; // found it!

else if (target < array[mid]) // must be in 1st half

last = mid - 1;

else // must be in 2nd half

first = mid + 1

}

return -1; // only got here if not found above

}

Binary Search: Recursive [pseudocode]
public static int binarySearch(int[] list, int value) {

return binSearch(list, target, 0, list.length -1); // initially entire list is valid

}

public static int binSearch(int[] list, int first, int last, int target) {

//Base Case: if no where left to look (if low > high) return (-1)

//Calculate mid (an int)

//Print mid – the item that is being compared

//if mid is equal to target, return mid

//else if mid is less than the target, first = mid + 1 (target is in the top half)

//else (mid is greater than the target), last = mid – 1 (target is in the bottom half)

//return [a recursive call to binSearch, passing values list, first, last, target]

}

• No loop! Recursive calls takes its place - But don’t think about that if it confuses you!

• Base cases checked first? (Why? Zero items? One item?)

Binary Search: Recursive

17

Merge Sort
Divide-and-conquer stragegy

18

Algorithm: Mergesort
• Specification:
 Input: Array E and indexes first and last
Output: Sorted rearrangement of the same elements in E between first & last

• Mergesort is a classic example of Divide and Conquer:
•
•
•
•

19

20Images © programiz.com

Animation: Mergesort

21

Mergesort
(divide and
conquer)

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

Mergesort: Divide stage

23

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

Mergesort: Conquer stage (merge)

24

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

Mergesort: Do it by hand ~ divide and merge stages
6 5 3 1 8 7 2 4

25

Exercise: Trace Mergesort Execution
• Can you trace MergeSort() on this list? (even # of elements)

A = {8, 3, 2, 9, 7, 1, 5, 4};  original list; to be sorted (8 elements)

8, 3, 2, 9 7, 1, 5, 4  divide into 2 lists of 4

8, 3 2, 9 7, 1 5, 4  divide 2 lists of 4 into 4 lists of 2

8, 3, 2, 9, 7, 1, 5, 4  divide into SINGLE items

3,8 2,9 1,7 4,5  merge single items into pairs

2,3,8,9 1,4,5,7  merge 4 pairs into 2 lists of 4

{1,2,3,4,5,7,8,9}  merge 2 lists of 4 into 1 list (Result)
26

Exercise: Trace Mergesort Execution
• Can you trace MergeSort() on this list? (odd # of elements)

A = {8, 3, 2, 9, 7, 1, 5, 4, 6};  original list; to be sorted (9 elements)

8, 3, 2, 9 7, 1, 5, 4, 6  divide two lists are not even (ok!)

8, 3 2, 9 7, 1 5, 4 6  divide into pairs + 1

8, 3, 2, 9, 7, 1, 5, 4, 6  divide into SINGLE items

3,8 2,9 1,7 4,5,6  merge single items into pairs + 3

2,3,8,9 1,4,5,6,7  merge

{1,2,3,4,5,6,7,8,9}  merge into 1 list (Result)
27

• Mergesort is O(n lg n)

same order-class as the most efficient sorts (quicksort and heapsort)

• It is more efficient than Selection Sort, Bubble Sort, and Insertion Sort

• The Divide and Conquer approach matters, and in this case, is a “win”!

• Most of the work is done in the “merge” portion of the algorithm

• Most implementations use a “scratch array”

 An extra array of size n which is then copied back into the original array

Efficiency of Mergesort

Merge part of Mergesort

29

Merging Sorted Sequences

• Problem:

 Given two sequences A and B sorted in non-decreasing order, merge them to create one
sorted sequence C

 Input size: C has n items, and A and B have n/2

• Strategy:

 Determine the first item in C: it should be the smaller of the first item in A and the first in
B.

 Suppose it is the first item of A. Copy that to C.

 Then continue merging B with “rest of A” (without the item copied to C). Repeat!30

Algorithm: Merge
(pseudocode)

• merge(A, B, C)

 if (A is empty)

 append what is left in B to C

 else if (B is empty)

 append what is left in A to C

 else if (first item in A <= first item in B)

 append first item in A to C

 merge (rest of A, B, C)

 else // first item in B is smaller

 append first item in B to C

 merge (A, rest of B, C)

 return

// sequence A and B; merge into C
// maintain current index of sub-arrays (A & B)
// and destination array (C)
int a_ptr = 0; int b_ptr = 0; int c_ptr = 0;
// until end of A or B is reached, pick the
// larger among elements pointed to in A and B
// and place in correct position in C array
while (a_ptr < A.len && b_ptr < B.len) {

if(A[a_ptr] <= B[b_ptr]) { // ele in A smaller
C[c_ptr] = A[a_ptr];
a_ptr++; // increment A pointer

} else { // ele in B smaller
C[c_ptr] = B[b_ptr];
b_ptr++; // increment B pointer

}
c_ptr++; // adjust C pointer for next ele

}
// when run out of elements in either A or B
// pick up the remaining ele and put into C
while (a_ptr < A.len) // copy rest of A into C

C[c_ptr] = A[a_ptr]; a_ptr++; c_ptr++;

while (b_ptr < B.len) // copy rest of B into C
C[c_ptr] = B[b_ptr]; b_ptr++; c_ptr++;

32Images © programiz.com

Examining Merge: Small Example

• Merge A and B: A= 3,8 B= 2,9 C= {} to hold sorted list

• 3,8 2,9 C={2}

• 3,8 9 C={2, 3}

• 8 9 C={2, 3, 8}

• 9 C={2, 3, 8, 9}

• Done!

33

Mergesort Analysis

• What is the runtime?

 Divide the list (constant)

 Two recursive sorts

 Merge (linear)

• Total: T(n) = 2T(n/2) + n = Θ(nlog(n))

 Uhhhhh...why?

• How to tell that this is true?

• T(n) = 2T(n/2) + n = Θ(nlog(n))

 Solve for a closed form (will see in
DSA2)

 Draw out tree and count (we did this!)

 Master theorem (nice...will see in DSA2)

34

Mergesort: Do it by hand ~ divide and merge stages
6 5 3 1 8 7 2 4

→

35

Meregesort Method Signature

• Typically, Mergesort is done like this instead:

• And recursive calls done like this

 Doesn't make new arrays when dividing

 Just ask mergesort to only work on one portion of interest

 merge() still uses scratch array, copies back to list

36

Algorithm: Meregesort

public static void mergeSort (Element[] E, int first, int last){

if (first < last) { // base case == 1 element

int mid = (first + last)/2; // calculate middle

mergeSort(E, first, mid); // sort first half

mergeSort(E, mid+1, last); // sort second half

merge(E, first, mid, last); // merge two sorted halves
}

}

