
CS 2100: Data Structures & Algorithms 1

Basic Sorts (Part II)
Insertion Sort; Lower-Bound Discussion

Dr. Nada Basit // bas i t@v i rg in ia . ed u

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

{Reminder} How to Sort?

• Some “straightforward” sorting algorithms

 Each is O(n2)

• More efficient sorting algorithms

 Each is O(n log n)

3

Sorting using Collections.sort()

• Collections and Arrays classes provide .sort() methods!

 Utilizes compareTo() or Comparator to determine order when comparing
elements

 “under the hood”, it’s a variant of something called Mergesort

 Θ(n log n) worst-case -- as good as we can do

 We’ll discuss how Mergesort works soon!

4

Insertion Sort
Another example of a sorting algorithm

5

Insertion Sort

• Similar to bubble sort, except some slight improvements.

• Most notably, insertion sort will terminate the inner loop when there is no need to continue

(i.e., this element already in correct position.)

6

Insertion Sort: Overall Idea & Pseudocode [not complete]

• Idea: At any point during sorting, elements 0 through i-1 are sorted and element i onward

are not.

• Take element i, and slide it down the list until in position, then stop and move onto i+1

• Once i finds its correct spot, no need to continue moving down the list.

7

Insertion Sort

• The basic approach to Insertion Sort is to make multiple

passes through the array.

• In each pass, we “insert” the first element in the unsorted side

into its correct sorted position in the sorted side.

• At the end of each pass, all the elements in the “sorted” side

are sorted in relation to one another, but may not be in their

final sorted position.

• We keep making passes through the array until all the elements

are in order.

8

In
se

rt
io

n
So

rt

• Yellow: sorted

• White: unsorted

• Insert 4 in sorted position:

 4 is smaller than 9; shift 9 to right

 4 is smaller than 5, shift 5 to right

 4 is larger than 3, INSERT 4 into
correct slot

9

Think: sorting a deck of cards!

In
se

rt
io

n
So

rt

• Worst-Case is the same as bubble sort: Θ(n2)

• BUT, if the inner loop only has to shift a few
elements out of the way each time, then it
terminates early, which makes insertion sort
very fast in some situations.

 List is "almost sorted"

 List is very small

10

Insertion Sort: Analysis

Cool Sorting Algorithms Visualizations

https://www.toptal.com/developers/sorting-algorithms

11

https://www.toptal.com/developers/sorting-algorithms

Best of a Breed?

12

Lower Bounds Proof

• We attempt to: Prove a whole class of algorithms have the same best-case run-time

• Question: bubble and insertion sort are adjacent sorts. Is it possible to develop an adjacent

sort algorithm that is (Little-Oh) o(n2) [strictly faster than n2]?

• Claim: Sorting a list by only swapping adjacent elements is (Big-Omega; LOWER BOUND) Ω(n2)

• Proof: Coming up!

13

… Spoiler

• Answer: NO!

 It is not possible for another adjacent sort algorithm to run more efficiently than n2 time

 That is, quadratic (n2) runtime is the best runtime you can possibly achieve with any
adjacent sorting algorithm → It could be n2, or worse (your approach might be really
inefficient, doing worse than n2)

 Therefore: it is Big-Omega(n2), or Ω(n2)

14

[Aside] Printing n elements in a list /
Counting Argument

• At minimum, you look at all n items at least once, and print each one

 print(arr[0])

 print(arr[1])

 print(arr[2])

 …

 print(arr[n])

• Therefore: (Big-Omega; LOWER BOUND) Ω(n)

• There exists no clever way to print n items in less than BigTheta(n), Θ(n), time (doing n

operations, or more if very inefficient solution)

15

Lower Bounds Proof

• Overall Approach: Count the minimum amount of work necessary to sort the list and divide by

how much of the list can be fixed in a single operation.

• Inversion: An inversion is a pair of elements in the list x and y that are not in relatively correct

sorted order.

 Inversion count: count of amount of work left to do to sort the list

 What we want…

 A sorted list, and have a count to show there is no work left to do

 An unsorted list, and have a count representing how much work is left to do

• Observation: A sorted list has 0 inversions. Thus "sorting" a list means removing all inversions.

16

Inversions

• How many inversions in worst case as a function of n?

• Every element in the list is out of order with every other element (NOT including itself)

 n(n-1) inversions

• Final formula for Inversions: Big-Theta(𝑛2)

𝑛 𝑛 − 1

2
=
𝑛2 − 𝑛

2
= 𝜃 𝑛2

• We divide by 2, so that we don’t count pairs twice!

 “7” and “4” are out of relative order AND “4” and “7” are out of relative order (same thing!)

17

How many Inversions Can I Fix Per Swap??

• How many inversion fixes can we do per operations?

• n2 inversions to fix (and we want to reduce this number of inversions to zero…)

• Q: How many inversions can I lower per operations?

• A: swap → fixes only one (1) inversion!

18

Lower Bound Proof

• Min Inversions: 0 (a sorted list)

• Max Inversions: ((n)(n-1)) / 2 = Θ(n2) (i.e., a reverse sorted list)

• Fixes per swap: Swapping adjacent items can fix at most one (1) inversion.

• Conclusion: Worse case is always (Big-Omega; LOWER BOUND) Ω(n2)

• Only way to achieve less than quadratic run-time, is if you can fix > 1 inversion per swap

 Better algorithms fix > 1 thing per operation!

19

