
CS 2100: Data Structures & Algorithms 1

Basic Sorts (Part II)
Insertion Sort; Lower-Bound Discussion

Dr. Nada Basit // bas i t@v i rg in ia . ed u

Spring 2022

Friendly Reminders

• The University updated the mask policy. As per my Request on Mar 28, 2022 (see
Collab), I would greatly appreciate if you would do me a kind favor by continuing
to wear your masks in CS 2100 (Ridley G008). I know it is a lot to ask, and it is
voluntary, but I appreciate your understanding.

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

{Reminder} How to Sort?

• Some “straightforward” sorting algorithms


 Each is O(n2)

• More efficient sorting algorithms


 Each is O(n log n)

3

Sorting using Collections.sort()

• Collections and Arrays classes provide .sort() methods!

 Utilizes compareTo() or Comparator to determine order when comparing
elements

 “under the hood”, it’s a variant of something called Mergesort

 Θ(n log n) worst-case -- as good as we can do

 We’ll discuss how Mergesort works soon!

4

Insertion Sort
Another example of a sorting algorithm

5

Insertion Sort

• Similar to bubble sort, except some slight improvements.

• Most notably, insertion sort will terminate the inner loop when there is no need to continue

(i.e., this element already in correct position.)

6

Insertion Sort: Overall Idea & Pseudocode [not complete]

• Idea: At any point during sorting, elements 0 through i-1 are sorted and element i onward

are not.

• Take element i, and slide it down the list until in position, then stop and move onto i+1

• Once i finds its correct spot, no need to continue moving down the list.

7

Insertion Sort

• The basic approach to Insertion Sort is to make multiple

passes through the array.

• In each pass, we “insert” the first element in the unsorted side

into its correct sorted position in the sorted side.

• At the end of each pass, all the elements in the “sorted” side

are sorted in relation to one another, but may not be in their

final sorted position.

• We keep making passes through the array until all the elements

are in order.

8

In
se

rt
io

n
So

rt

• Yellow: sorted

• White: unsorted

• Insert 4 in sorted position:

 4 is smaller than 9; shift 9 to right

 4 is smaller than 5, shift 5 to right

 4 is larger than 3, INSERT 4 into
correct slot

9

Think: sorting a deck of cards!

In
se

rt
io

n
So

rt

• Worst-Case is the same as bubble sort: Θ(n2)

• BUT, if the inner loop only has to shift a few
elements out of the way each time, then it
terminates early, which makes insertion sort
very fast in some situations.

 List is "almost sorted"

 List is very small

10

Insertion Sort: Analysis

Cool Sorting Algorithms Visualizations

https://www.toptal.com/developers/sorting-algorithms

11

https://www.toptal.com/developers/sorting-algorithms

Best of a Breed?

12

Lower Bounds Proof

• We attempt to: Prove a whole class of algorithms have the same best-case run-time

• Question: bubble and insertion sort are adjacent sorts. Is it possible to develop an adjacent

sort algorithm that is (Little-Oh) o(n2) [strictly faster than n2]?

• Claim: Sorting a list by only swapping adjacent elements is (Big-Omega; LOWER BOUND) Ω(n2)

• Proof: Coming up!

13

… Spoiler

• Answer: NO!

 It is not possible for another adjacent sort algorithm to run more efficiently than n2 time

 That is, quadratic (n2) runtime is the best runtime you can possibly achieve with any
adjacent sorting algorithm → It could be n2, or worse (your approach might be really
inefficient, doing worse than n2)

 Therefore: it is Big-Omega(n2), or Ω(n2)

14

[Aside] Printing n elements in a list /
Counting Argument

• At minimum, you look at all n items at least once, and print each one

 print(arr[0])

 print(arr[1])

 print(arr[2])

 …

 print(arr[n])

• Therefore: (Big-Omega; LOWER BOUND) Ω(n)

• There exists no clever way to print n items in less than BigTheta(n), Θ(n), time (doing n

operations, or more if very inefficient solution)

15

Lower Bounds Proof

• Overall Approach: Count the minimum amount of work necessary to sort the list and divide by

how much of the list can be fixed in a single operation.

• Inversion: An inversion is a pair of elements in the list x and y that are not in relatively correct

sorted order.

 Inversion count: count of amount of work left to do to sort the list

 What we want…

 A sorted list, and have a count to show there is no work left to do

 An unsorted list, and have a count representing how much work is left to do

• Observation: A sorted list has 0 inversions. Thus "sorting" a list means removing all inversions.

16

Inversions

• How many inversions in worst case as a function of n?

• Every element in the list is out of order with every other element (NOT including itself)

 n(n-1) inversions

• Final formula for Inversions: Big-Theta(𝑛2)

𝑛 𝑛 − 1

2
=
𝑛2 − 𝑛

2
= 𝜃 𝑛2

• We divide by 2, so that we don’t count pairs twice!

 “7” and “4” are out of relative order AND “4” and “7” are out of relative order (same thing!)

17

How many Inversions Can I Fix Per Swap??

• How many inversion fixes can we do per operations?

• n2 inversions to fix (and we want to reduce this number of inversions to zero…)

• Q: How many inversions can I lower per operations?

• A: swap → fixes only one (1) inversion!

18

Lower Bound Proof

• Min Inversions: 0 (a sorted list)

• Max Inversions: ((n)(n-1)) / 2 = Θ(n2) (i.e., a reverse sorted list)

• Fixes per swap: Swapping adjacent items can fix at most one (1) inversion.

• Conclusion: Worse case is always (Big-Omega; LOWER BOUND) Ω(n2)

• Only way to achieve less than quadratic run-time, is if you can fix > 1 inversion per swap

 Better algorithms fix > 1 thing per operation!

19

