* *|
* *
+ -

[UNIVERSITY
I\IRGINIA

CS 2100: Data Structures & Algorithms 1

Basic Sorts (Part I)

Intro to Sorting; Comparable & compareTo(); Bubble Sort

Dr. Nada Basit// basit@virginia.edu
Spring 2022

Friendly Reminders

—_— .

- Masks are required at all times during class (University Policy)

- If you forget your mask (or mask is lost/broken), | have a few available
- Just come up to me at the start of class and ask!

- No eating or drinking in the classroom, please

- Our lectures will be recorded (see Collab) - please allow 24-48 hrs to post

- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©

Introduction to Sorting

An Tnteductien te Geting
Reminden ofy Companable Tnteyyace and the companeTel) methed
Exaumple ey av bavic setting algernitivn: Bubble Get

Sorting

—_— .

- PROBLEM: Given a list (usually an array but it could be a vector or linked list) of things,

sort the list
- INPUT: An array of things (objects, primitives, whatever...)
- OUTPUT: A list of the same things, but in sorted order

« The sorting problem...
Given a sequence a, ... &, reorder them into a permutation a’, ... a’,
such that a’, <= a’,,, for all pairs
- Specifically, this is sorting in non-descending order. ..

Basic operation: Comparison of keys

Sorting

- In computing, we often want to
order a set of items

* Find the max/best or min/worst
« Sort them In order

- Sorting a deck of cards, sorting
books, or sorting a collection of
numbers are all commonplace .
examples of sorting algorithm | v\% \© FN‘JC\WQM L‘&' i
implementations.

o @ i M;malie M‘v(.‘ o datn move jrecf«o@é%. ;

(@ 1t walkes ey o sk o v
. fatcwi#;mfm A dafx.

Image ref: medium.com/basecs/ (basics of sorting algorithms)

How to Sort?

- Many sorting algorithms have been found!
- Problem is a case-study in algorithm design
* You’ll see more of these in CS 2150 and CS 4102

- Some “straightforward” sorting algorithms
* Insertion Sort, Selection Sort, Bubble Sort

- Each is O(n?)

- More efficient sorting algorithms Best Sorts are O(n log n)
* Quicksort, Mergesort, Heapsort

- Each is O(n log n)

Note: these are for sorting in RAM (not on disk)

Sorting: Other Requirements

_

- REQUIREMENT: The "things" in the list must have, at a minimum, the less than (<)
operator defined.

- 1.e., | can't sort things if | can't tell which are less than others.
- In reality, we usually can utilize less than, greater than, and equals to operators.
- Java does this through the Comparable interface.

4

Sorting: Other Vocabulary

—_— . —————

- COMPARISON Sorts: Algorithms that sort by making use of direct comparisons (i.e., <=
operator) and swapping elements.

- ADJACENT Sorts: Algorithms that sort by only swapping adjacent elements in the list
* e.g., bubble sort and insertion sort
- ...these are a subset of comparison sorts.

- STABLE Sorts: A sorting algorithm is stable if when two items x and y occur in the relative
order x,y in the original list AND x==y, then x and y appear in the same relative order X,y
In the final sorted list

* Thought exercise: Why would we want this?

- IN-PLACE Sorts: A sorting algorithm is in-place if the algorithm uses at most Big-Theta(1)
extra space (e.g., allocating another array of size n is NOT allowed)

Stable
e

Not stable

Tables with students, originally sorted in alphabetical order.

BEFORE

Name

Dave

Fabian

Gill

Greg

Harry

BEFORE

Name

Grade

Dave

Fabian

Gill

Greg

Harry

|2 |0D0O| O

y

Fabian

Dave

AFTER
Name Grade
Greg A
Harry A
Earl B
Fabian B
Gill B
Dave C
AFTER
Name Grade
Greg A
Harry A

Stable Sort
Example:

Stable sorting because we preserved
the initial, alphabetical order after
we sorted by the Grade column.

Unstable sorting because we did not
preserve the initial, alphabetical order
after we sorted by the Grade column.

10

Sorting in Java

- How does Java handle sorting?

- Remember the Java Collections Framework??

Collections Framework

- The Java Collections Framework Is really:
- A common set of operations for “abstract” data structures:
* List Interface: operations for any kind of list
- Set Interface: operations for any kind of set
* Map Interface: operations for any kind of map
- A set of useful concrete classes that we can use:

- E.g. ArrayList, HashMap, TreeSet, ...
- A common set of operations for all Collections:
*Collection Interface: operations we can perform on any Collection object

* *Collections Class: contains static methods that can process Collection and List
objects

Check out the Collections class

—_— .

- There are many methods
- Many have nothing to do with order

- We will concentrate on ones relating to order

! In particular Collections.sort ()
* Check out the Collections API

- In the JCF there is a Class called Collections
- In this class there is a method called sort ()

- Collections.sort() requires all objects (classes) it is about to sort to implement the
Comparable interface, by overriding the stub and implementing the compareTo()
method — write it so that Collections.sort() knows how to sort YOUR items

Sorting in Java — Collections.sort()

- We want to be able to do something like this:

public static< T > void sort(

ArraylList< > a = new ArraylList<

Collections.sort(a);

Comparable Interface

—_— e ——

- Collections Framework provides a Comparable Interface
- Defines the natural ordering Of objects of a class

“This interface imposes a total ordering on the objects of each class
that implements it. This ordering is referred to as the class’s
natural ordering, and the class’s compareTo method is referred to
as its natural comparison method.” — Comparable API

Using Generics!

Implementing Comparab

- The Comparable In e requires only one method:
- .compareTo(T o) —compare this object to “0”

- We must implement the interface and define T:

public class PhoneBookEntry implements Comparable<PhoneBookEntry

Fill in actual type!

@Override

public int compareTo(PhoneBookEntry o) {...}
)

- Comparable interface is generic, where you must include the type of the class
- The type inside the <> defines T

Implementing Comparable ~ fulfilling the contract

- Implement .compareTo(T o) to fulfill the contract
public int compareTo(T o) { .. }

- Format: stringl.compareTo(string2) //returns an int

- Programming convention: Return value as follows:
- zero If the same ~ sameness should be same as .equals()

- negative value If first item strictly less than second
- positive value If first item strictly greater than second

- We don’t care about the actual value

In Order for Your Items To Be Comparable...

- If you ever want to put your own objects in Collections, and use sort() you must:
1. Make your class implement the Comparable interface

2. Implement (write) the compareTo() method in your class

- How to write compareTo()?
- Think about state-variables that determine natural order
- Compare them and return proper-value
- What makes one of your objects less-than or greater-than the other?

Example: Student Class

- Student class “implements” the Comparable<Student> {
Comparable interface:
Comparable<Student>

: _ i (name, score) {
Must fulfil contract: override name = name;

the compareTo() method stub .score = score;

- Stl.compareTo(St2);

- Body: define the natural _ — ()+{Scope;

ordering Of the class }

- Now that we can say one » @0verride
student is > or < another, we
can create a BST of type
Student (otherwise we cant!)

Requirements For Sorting

- Two requirements for Collections.sort()

« R1: The list (the parameter) must implement Java's List< T > interface. The List will
definitely be a collection of things.

- R7Z: The items in the List must implement Java's Comparable interface. This ensures they
can be compared to each other.

- Comparable means that we can always use the compareTo(Object other) method to
do the actual sorting.

Example: Writing compareTo()

The type is the
type of the class!
(Not “Object” like

- int compareTo(PhoneBookEntry item2) { the equals()
int retVal= this.last.compareTo(item2.last); method!)
if (retVal != 0) return retVa%\
retVal = this.first.compareTo(item2.first); compareTo()

if (retval != @) return retVal;
retVal = this.phNum - item2.phNum;

| return retval; PhoneBooKkEntry
} last: String

Use of subtraction when dealing with numbers (a first: String
primitive) - will still be pos/neg/zero phNum: int
compareTo(PhoneBookEntry, item) : int

- Imagine something like an entry in a phonebook
* Order by last name, first name, then number

for Strings!

comparelo() and various types

- Strings:
- compareTo() with Strings uses alphabetical order to give you an “order” of Strings
- Format: stringA.compareTo(stringB); // returns an int
- Numbers (ints) — e.g. sort students by score @override
- Use subtraction method (not compareTo())
- If “this.score” is 80 and “0.score” is 90
- this.score — o.score 1s: 80-90 = -10 (negative)

- This will sort student scores in ascending
order (Question: how to sort in descending order??)

(0) {

.SCore - 0.s5C0re,

- Object /reference types: use compareTo() !

comparelo() and various types

—_— .
- booleans: (assume sort “true” before “false” for an “isAutomatic” attribute)
- Check values for both [this is only one example of how it can be done]
Typical way to handle booleans:

c1f(this.i1sAutomatic == true && other.isAutomatic == false) {
return -1; // this before other

}

else 1f (this.isAutomatic == false && other.isAutomatic == true) {
return +1; // this after other

}

else
return 0; // equal; order doesn’t matter

* Another option:
*1f(this.isAutomatic && !other.isAutomatic) { return -1; }

Another Example: Sorting People By Height

- If you wish to sort a List of Person objects (by height, in this case):
public class Person implements Comparable< Person >{
private int age;
private double height;

public int compareTo(Person other){
return this.height - other.height;

— _Arraylist< Person > p = new ArrayList < Person >();

——— lCollections.sort(p);

Bubble Sort

Bubble Sort

- First sorting algorithm we will look at
- NOT a good choice (efficiency-wise)

- Only showing as an introduction / most basic approach

Bubble Sort

Overall Idea:

- For each pair of adjacent elements, swap the bigger one up one position if
necessary so that the largest item "bubbles” to the highest index in the list.

Repeat n times.

6 5 3 18 7 2 4

- Bubble Sort Pseudocode:

bubbleSort ():
for each 1 from ® to n-2

for each j from 6 to n-1-1
if 1ist[j] > list[j+1]
Swap [7] [J+1]

Bubble Sort

—_— . —————

- To sort an array of n elements in ascending order, we use a nested loop:

- The outer loop executes n — 1 times.

- For each iteration of the outer loop, the inner loop steps through all the unsorted elements
of the array and does the following:

- Compares the current element with the next element in the array.

- If the next element is smaller, it swaps the two elements.

1 1
A

T

il

50

41

S+

I
1]

SENEEEN

I+

o 01 @ Bl E E (L4 I Y N 4 N < B O B &

Bubble Sort — Simple Number Example

original: 3 9 6 1 2 (underlined=out of order in next pass)

pass 1:
swap 9 and 6 36912
swap 9 and 1 36192
swap 9 and 2 36129
pass 2:
swap 6 and 1 316209
swap 6 and 2 312609
pass 3:
swap 3 and 1 132609
swap 3 and 2 123609

pass 4:
no swaps 1 2 3 6 9 Sorted!

Bubble Sort: Analysis

- Bubble sort is @(n?). Why?

- Even worse: Bubble sort will ALVWAY'S do the most amount of work possible.

- Why? Because the outer and inner loops ALWAY'S run completely through. Are never cut
short for any reason.

- This is primarily why bubble sort is a very bad choice for sorting.

