
CS 2100: Data Structures & Algorithms 1

Basic Sorts (Part I)
Intro to Sorting; Comparable & compareTo(); Bubble Sort

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Introduction to Sorting
An Introduction to Sorting

Reminder of Comparable Interface and the compareTo() method

Example of a basic sorting algorithm: Bubble Sort

3

Sorting

• PROBLEM: Given a list (usually an array but it could be a vector or linked list) of things,

sort the list

• INPUT: An array of things (objects, primitives, whatever…)

• OUTPUT: A list of the same things, but in sorted order

• The sorting problem…

 Given a sequence a0 … an reorder them into a permutation a’0 … a’n

such that a’i <= a’i+1 for all pairs

 Specifically, this is sorting in non-descending order…

 Basic operation: Comparison of keys

4

Sorting

5

Image ref: medium.com/basecs/ (basics of sorting algorithms)

• In computing, we often want to

order a set of items

 Find the max/best or min/worst

 Sort them in order

• Sorting a deck of cards, sorting

books, or sorting a collection of

numbers are all commonplace

examples of sorting algorithm

implementations.

5

How to Sort?

• Many sorting algorithms have been found!
 Problem is a case-study in algorithm design

 You’ll see more of these in CS 2150 and CS 4102

• Some “straightforward” sorting algorithms


 Each is O(n2)

• More efficient sorting algorithms


 Each is O(n log n)

Note: these are for sorting in RAM (not on disk) 6

Sorting: Other Requirements

• REQUIREMENT: The "things" in the list must have, at a minimum, the less than (<)

operator defined.

 i.e., I can't sort things if I can't tell which are less than others.

 In reality, we usually can utilize less than, greater than, and equals to operators.

 Java does this through the Comparable interface.

7

Sorting: Other Vocabulary

• COMPARISON Sorts: Algorithms that sort by making use of direct comparisons (i.e., <=

operator) and swapping elements.

• ADJACENT Sorts: Algorithms that sort by only swapping adjacent elements in the list

 e.g., bubble sort and insertion sort

 ...these are a subset of comparison sorts.

• STABLE Sorts: A sorting algorithm is stable if when two items x and y occur in the relative

order x,y in the original list AND x==y, then x and y appear in the same relative order x,y

in the final sorted list

 Thought exercise: Why would we want this?

• IN-PLACE Sorts: A sorting algorithm is in-place if the algorithm uses at most Big-Theta(1)

extra space (e.g., allocating another array of size n is NOT allowed)

8

9

Stable Sort
Example:

10

Stable Sort
Example:

Sorting in Java

• How does Java handle sorting?

• Remember the Java Collections Framework??

11

Collections Framework

• The is really:

 A common set of operations for “abstract” data structures:

 : operations for any kind of list

 : operations for any kind of set

 : operations for any kind of map

 A set of useful that we can use:

 E.g. ArrayList, HashMap, TreeSet, …

 A common set of operations for all Collections:

 Collection Interface: operations we can perform on any Collection object

 Collections Class: contains that can process Collection and List

objects

12

• There are many methods

 Many have nothing to do with order

• We will concentrate on ones relating to

• In particular Collections.sort()!

• Check out the Collections API

• In the JCF there is a Class called Collections

• In this class there is a method called sort()

• Collections.sort() requires all objects (classes) it is about to sort to implement the

Comparable interface, by overriding the stub and implementing the compareTo()
method – write it so that Collections.sort() knows how to sort YOUR items

Check out the Collections class

13

Sorting in Java – Collections.sort()

• We want to be able to do something like this:

14

Comparable Interface

• Collections Framework provides a Comparable interface

 Defines the of objects of a class

15

Implementing Comparable
• The Comparable interface requires only one method:

 .compareTo(T o) – compare this object to “o”

• We must implement the interface and define T:

public class PhoneBookEntry implements Comparable<PhoneBookEntry> {

...

@Override

public int compareTo(PhoneBookEntry o) {...}

}
• Comparable interface is generic, where you must include the type of the class

• The type inside the <> defines T

Using Generics!

Fill in actual type!

16

• Implement .compareTo(T o) to fulfill the contract

public int compareTo(T o) { … }

 Format: string1.compareTo(string2) //returns an int

 Programming convention: Return value as follows:

zero if the same

negative value if first item strictly less than second

positive value if first item strictly greater than second

 We don’t care about the actual value

Implementing Comparable ~ fulfilling the contract

17

In Order for Your Items To Be Comparable…

• If you ever want to put your own objects in Collections, and use sort() you must:

1. Make your class

2. Implement (write) the in your class

• How to write compareTo()?

 Think about state-variables that determine natural order

 Compare them and return proper-value

 What makes one of your objects less-than or greater-than the other?

18

Example: Student Class
• Student class “ ” the

Comparable interface:
Comparable<Student>

• Must fulfil contract: override

the compareTo() method stub

• St1.compareTo(St2);

• Body: define the

of the class

• Now that we can say one

student is > or < another, we

can create a BST of type

Student (otherwise we can’t!)

19

19

Requirements For Sorting

• Two requirements for Collections.sort()

• R1: The list (the parameter) must implement Java's List< T > interface. The List will

definitely be a collection of things.

• R2: The items in the List must implement Java's Comparable interface. This ensures they

can be compared to each other.

 Comparable means that we can always use the compareTo(Object other) method to
do the actual sorting.

20

Example: Writing compareTo()

• Imagine something like an entry in a phonebook

 Order by last name, first name, then number

• int compareTo(PhoneBookEntry item2) {
int retVal= this.last.compareTo(item2.last);
if (retVal != 0) return retVal;
retVal = this.first.compareTo(item2.first);
if (retVal != 0) return retVal;
retVal = this.phNum - item2.phNum;
return retVal;

}

The type is the
type of the class!
(Not “Object” like

the equals()

method!)

Use of subtraction when dealing with numbers (a
primitive) – will still be pos/neg/zero

compareTo()
for Strings!

21

compareTo() and various types
• Strings:

 compareTo() with Strings uses alphabetical order to give you an “order” of Strings

 Format: stringA.compareTo(stringB); // returns an int

• Numbers (ints) – e.g. sort students by score

 Use subtraction method (not compareTo())

 If “this.score” is 80 and “o.score” is 90

 this.score – o.score is: 80-90 = -10 (negative)

 This will sort student scores in ascending
order (Question: how to sort in descending order??)

• Object /reference types: use compareTo() !

22

compareTo() and various types
• booleans: (assume sort “true” before “false” for an “isAutomatic” attribute)

 Check values for both [this is only one example of how it can be done]

Typical way to handle booleans:

 if(this.isAutomatic == true && other.isAutomatic == false) {

return -1; // this before other

}

else if (this.isAutomatic == false && other.isAutomatic == true){

return +1; // this after other

}

else

return 0; // equal; order doesn’t matter

 Another option:

 if(this.isAutomatic && !other.isAutomatic) { return -1; }

...
23

Another Example: Sorting People By Height

• If you wish to sort a List of Person objects (by height, in this case):

24

Bubble Sort

25

Bubble Sort

• First sorting algorithm we will look at

• NOT a good choice (efficiency-wise)

• Only showing as an introduction / most basic approach

26

Bubble Sort

Overall Idea:

• For each pair of adjacent elements, swap the bigger one up one position if
necessary so that the largest item "bubbles" to the highest index in the list.
Repeat n times.

• Bubble Sort Pseudocode:

27

Bubble Sort

• To sort an array of n elements in ascending order, we use a nested loop:

• The outer loop executes n – 1 times.

• For each iteration of the outer loop, the inner loop steps through all the unsorted elements

of the array and does the following:

 Compares the current element with the next element in the array.

 If the next element is smaller, it swaps the two elements.

28

Bubble Sort – Simple Number Example

original: 3 9 6 1 2

pass 1:
swap 9 and 6 3 6 9 1 2
swap 9 and 1 3 6 1 9 2
swap 9 and 2 3 6 1 2 9

pass 2:
swap 6 and 1 3 1 6 2 9
swap 6 and 2 3 1 2 6 9

pass 3:
swap 3 and 1 1 3 2 6 9
swap 3 and 2 1 2 3 6 9

pass 4:
no swaps 1 2 3 6 9 Sorted!

29

Bubble Sort: Analysis

• Bubble sort is Θ(n2). Why?

• Even worse: Bubble sort will ALWAYS do the most amount of work possible.

 Why? Because the outer and inner loops ALWAYS run completely through. Are never cut
short for any reason.

 This is primarily why bubble sort is a very bad choice for sorting.

30

