
CS 2100: Data Structures & Algorithms 1

Basic Sorts (Part I)
Intro to Sorting; Comparable & compareTo(); Bubble Sort

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Introduction to Sorting
An Introduction to Sorting

Reminder of Comparable Interface and the compareTo() method

Example of a basic sorting algorithm: Bubble Sort

3

Sorting

• PROBLEM: Given a list (usually an array but it could be a vector or linked list) of things,

sort the list

• INPUT: An array of things (objects, primitives, whatever…)

• OUTPUT: A list of the same things, but in sorted order

• The sorting problem…

 Given a sequence a0 … an reorder them into a permutation a’0 … a’n

such that a’i <= a’i+1 for all pairs

 Specifically, this is sorting in non-descending order…

 Basic operation: Comparison of keys

4

Sorting

5

Image ref: medium.com/basecs/ (basics of sorting algorithms)

• In computing, we often want to

order a set of items

 Find the max/best or min/worst

 Sort them in order

• Sorting a deck of cards, sorting

books, or sorting a collection of

numbers are all commonplace

examples of sorting algorithm

implementations.

5

How to Sort?

• Many sorting algorithms have been found!
 Problem is a case-study in algorithm design

 You’ll see more of these in CS 2150 and CS 4102

• Some “straightforward” sorting algorithms

 Each is O(n2)

• More efficient sorting algorithms

 Each is O(n log n)

Note: these are for sorting in RAM (not on disk) 6

Sorting: Other Requirements

• REQUIREMENT: The "things" in the list must have, at a minimum, the less than (<)

operator defined.

 i.e., I can't sort things if I can't tell which are less than others.

 In reality, we usually can utilize less than, greater than, and equals to operators.

 Java does this through the Comparable interface.

7

Sorting: Other Vocabulary

• COMPARISON Sorts: Algorithms that sort by making use of direct comparisons (i.e., <=

operator) and swapping elements.

• ADJACENT Sorts: Algorithms that sort by only swapping adjacent elements in the list

 e.g., bubble sort and insertion sort

 ...these are a subset of comparison sorts.

• STABLE Sorts: A sorting algorithm is stable if when two items x and y occur in the relative

order x,y in the original list AND x==y, then x and y appear in the same relative order x,y

in the final sorted list

 Thought exercise: Why would we want this?

• IN-PLACE Sorts: A sorting algorithm is in-place if the algorithm uses at most Big-Theta(1)

extra space (e.g., allocating another array of size n is NOT allowed)

8

9

Stable Sort
Example:

10

Stable Sort
Example:

Sorting in Java

• How does Java handle sorting?

• Remember the Java Collections Framework??

11

Collections Framework

• The is really:

 A common set of operations for “abstract” data structures:

 : operations for any kind of list

 : operations for any kind of set

 : operations for any kind of map

 A set of useful that we can use:

 E.g. ArrayList, HashMap, TreeSet, …

 A common set of operations for all Collections:

 Collection Interface: operations we can perform on any Collection object

 Collections Class: contains that can process Collection and List

objects

12

• There are many methods

 Many have nothing to do with order

• We will concentrate on ones relating to

• In particular Collections.sort()!

• Check out the Collections API

• In the JCF there is a Class called Collections

• In this class there is a method called sort()

• Collections.sort() requires all objects (classes) it is about to sort to implement the

Comparable interface, by overriding the stub and implementing the compareTo()
method – write it so that Collections.sort() knows how to sort YOUR items

Check out the Collections class

13

Sorting in Java – Collections.sort()

• We want to be able to do something like this:

14

Comparable Interface

• Collections Framework provides a Comparable interface

 Defines the of objects of a class

15

Implementing Comparable
• The Comparable interface requires only one method:

 .compareTo(T o) – compare this object to “o”

• We must implement the interface and define T:

public class PhoneBookEntry implements Comparable<PhoneBookEntry> {

...

@Override

public int compareTo(PhoneBookEntry o) {...}

}
• Comparable interface is generic, where you must include the type of the class

• The type inside the <> defines T

Using Generics!

Fill in actual type!

16

• Implement .compareTo(T o) to fulfill the contract

public int compareTo(T o) { … }

 Format: string1.compareTo(string2) //returns an int

 Programming convention: Return value as follows:

zero if the same

negative value if first item strictly less than second

positive value if first item strictly greater than second

 We don’t care about the actual value

Implementing Comparable ~ fulfilling the contract

17

In Order for Your Items To Be Comparable…

• If you ever want to put your own objects in Collections, and use sort() you must:

1. Make your class

2. Implement (write) the in your class

• How to write compareTo()?

 Think about state-variables that determine natural order

 Compare them and return proper-value

 What makes one of your objects less-than or greater-than the other?

18

Example: Student Class
• Student class “ ” the

Comparable interface:
Comparable<Student>

• Must fulfil contract: override

the compareTo() method stub

• St1.compareTo(St2);

• Body: define the

of the class

• Now that we can say one

student is > or < another, we

can create a BST of type

Student (otherwise we can’t!)

19

19

Requirements For Sorting

• Two requirements for Collections.sort()

• R1: The list (the parameter) must implement Java's List< T > interface. The List will

definitely be a collection of things.

• R2: The items in the List must implement Java's Comparable interface. This ensures they

can be compared to each other.

 Comparable means that we can always use the compareTo(Object other) method to
do the actual sorting.

20

Example: Writing compareTo()

• Imagine something like an entry in a phonebook

 Order by last name, first name, then number

• int compareTo(PhoneBookEntry item2) {
int retVal= this.last.compareTo(item2.last);
if (retVal != 0) return retVal;
retVal = this.first.compareTo(item2.first);
if (retVal != 0) return retVal;
retVal = this.phNum - item2.phNum;
return retVal;

}

The type is the
type of the class!
(Not “Object” like

the equals()

method!)

Use of subtraction when dealing with numbers (a
primitive) – will still be pos/neg/zero

compareTo()
for Strings!

21

compareTo() and various types
• Strings:

 compareTo() with Strings uses alphabetical order to give you an “order” of Strings

 Format: stringA.compareTo(stringB); // returns an int

• Numbers (ints) – e.g. sort students by score

 Use subtraction method (not compareTo())

 If “this.score” is 80 and “o.score” is 90

 this.score – o.score is: 80-90 = -10 (negative)

 This will sort student scores in ascending
order (Question: how to sort in descending order??)

• Object /reference types: use compareTo() !

22

compareTo() and various types
• booleans: (assume sort “true” before “false” for an “isAutomatic” attribute)

 Check values for both [this is only one example of how it can be done]

Typical way to handle booleans:

 if(this.isAutomatic == true && other.isAutomatic == false) {

return -1; // this before other

}

else if (this.isAutomatic == false && other.isAutomatic == true){

return +1; // this after other

}

else

return 0; // equal; order doesn’t matter

 Another option:

 if(this.isAutomatic && !other.isAutomatic) { return -1; }

...
23

Another Example: Sorting People By Height

• If you wish to sort a List of Person objects (by height, in this case):

24

Bubble Sort

25

Bubble Sort

• First sorting algorithm we will look at

• NOT a good choice (efficiency-wise)

• Only showing as an introduction / most basic approach

26

Bubble Sort

Overall Idea:

• For each pair of adjacent elements, swap the bigger one up one position if
necessary so that the largest item "bubbles" to the highest index in the list.
Repeat n times.

• Bubble Sort Pseudocode:

27

Bubble Sort

• To sort an array of n elements in ascending order, we use a nested loop:

• The outer loop executes n – 1 times.

• For each iteration of the outer loop, the inner loop steps through all the unsorted elements

of the array and does the following:

 Compares the current element with the next element in the array.

 If the next element is smaller, it swaps the two elements.

28

Bubble Sort – Simple Number Example

original: 3 9 6 1 2

pass 1:
swap 9 and 6 3 6 9 1 2
swap 9 and 1 3 6 1 9 2
swap 9 and 2 3 6 1 2 9

pass 2:
swap 6 and 1 3 1 6 2 9
swap 6 and 2 3 1 2 6 9

pass 3:
swap 3 and 1 1 3 2 6 9
swap 3 and 2 1 2 3 6 9

pass 4:
no swaps 1 2 3 6 9 Sorted!

29

Bubble Sort: Analysis

• Bubble sort is Θ(n2). Why?

• Even worse: Bubble sort will ALWAYS do the most amount of work possible.

 Why? Because the outer and inner loops ALWAYS run completely through. Are never cut
short for any reason.

 This is primarily why bubble sort is a very bad choice for sorting.

30

