
CS 2100: Data Structures & Algorithms 1

Red-Black Trees (brief) & Tree Applications

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Red-Black Trees
(Brief)

3

Red-Black Trees

• Each node has a color attribute, which is either (wait for it…) red or black ☺

• Animation site examples are HERE and HERE. (All copyright remains with original
author(s) as applicable). There are more out there, you can find, even one by Daniel Liang.

4

https://www.cs.csubak.edu/~msarr/visualizations/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://yongdanielliang.github.io/animation/web/RBTree.html

Red-Black Tree Properties

All of these properties must hold for a red-black tree

• A node is either red or black

• The root is black

• All leaves are black

 The leaves may be the NULL children

• Both children of every red node are black

 Therefore, a black node is the only possible parent for a red node

• Every simple path from a node to any descendant leaf contains the same number of black

nodes

 Counting or not counting the NULL black nodes; it doesn't make a difference as long as
you are consistent 5

Red-Black Tree Operations

Insert
• Insert the node as for a normal BST

 And color it red

• 5 possible cases:

1. The new node is the root node

2. The new node's parent is black

3. Both the parent and uncle (aunt?) are red

4. Parent is red, uncle/aunt is black, new
node is the right child of parent

5. Parent is red, uncle/aunt is black, new
node is the left child of parent

Delete / Remove
• Do a normal BST remove

• Find next highest/lowest value, put its value

in the node to be deleted, remove that

highest/lowest node

 Note that that node won't have 2 children!

• We replace the node to be deleted with its

left child

 This child is N, its sibling is S, its parent is P

• There are 6 possible cases! (See next slide)

6

Red-Black Tree: Removal Cases

• A total of 6 cases!

1. N is the new root

2. S is red

3. P, S, and S's children are black

4. S and S's children are black, but P is red

5. S is black, S's left child is red, S's right child is black, and N is the left child of its
parent

6. S is black, S's right child is red, and N is the left child of parent P

• We won’t see them in detail, though, but you can find details on the Wiki

 https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

7

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

Why Red-Black Trees vs. AVL Trees?

• AVL trees are more rigidly balanced than red-black trees

 Thus, more rotations are required during the operations in the worst case

• Time-critical applications will see a performance boost

• Functional programming languages used red-black trees for associative arrays (hashes)

 The tree can be a persistent data structure

 A data structure that retains a "memory" of its mutations

• Main take-away:

 Red-Black Trees and BSTs/AVL Trees have the same Big-Theta run time

 However, Red-Black trees perform better in practice due to…

 Generally lower constant factors

 Doesn’t rotate as often
8

Tree Applications
Some examples and concluding thoughts on Trees

9

When Are Trees Not Good To Use?

• Trees are fast -- so when would we not want to use them?

 When the items do not have a sorted order

 A list of todo tasks

 When we want less complexity

 A stack or a queue

 When we want an Θ(1) operation on retrieves

 Vector get()

 When we want an Θ(1) time for all operations

 Hash tables can (almost) achieve that
10

Application Of Tress: Programs

• Any program can be represented as a tree; consider the following program (no externall

source code):

• Note that there are two int z declarations; this will be relevant shortly 11

T
he

 P
ro

gr
am

 T
re

e

12

Notes on The Program Tree

• Called an "abstract syntax tree" or a "parse

tree"

• Each node can be a different type

 Having different properties and different
number of children

 A for loop node has four children (for
init, for expression, for update, body)

 A function node has at least three
children (parameters, variables, body)

 (we are ignoring other possible children of a
function node here)

 A body node has a variable number
children

• A compiler will build such a tree in memory

• And traverse it many times

• For example, to figure out which 'z' is
used in the main() function

• Or to do code generation

• Each node has an overridden method
to generate the code for that node

• Or to do type checking

• Or to do code optimization

13

Comparing Two Programs

• What if we read in two programs…

 … and build parse trees for each

 … and compare their structure?

• We would be able to compare the two programs while ignoring such things as:

 Function / method order

 Variable renaming

 Different comments

14

Measure of Structural Similarity

• "A System for Detecting Software Plagiarism" (website - http://theory.stanford.edu/~aiken/moss/)

 The paper the site is based on can be found here
(http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf)

• It will load up all the programs for a class

• And do all n2 comparisons

• And display the most similar programs

15

http://theory.stanford.edu/~aiken/moss/
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf

