* *|
* *
+ -

[UNIVERSITY
I\IRGINIA

CS 2100: Data Structures & Algorithms 1

Inheritance

A Re-emphasis and Proper Introduction

Dr. Nada Basit// basit@virginia.edu
Spring 2022

Friendly Reminders

—_— .

- Masks are required at all times during class (University Policy)

- If you forget your mask (or mask is lost/broken), | have a few available
- Just come up to me at the start of class and ask!

- No eating or drinking in the classroom, please

- Our lectures will be recorded (see Collab) - please allow 24-48 hrs to post

- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©

Basic Inheritance

Inheritance is an object-oriented concept that supports cohesion,
code reuse and polymorphic behavior

Motivation

—_— .

- Sometimes we want to create objects that naturally share a lot of functionality.
* e.g., AVL trees and BST both store and use binary nodes
* e.g., find() in AVL and BST works the same way

- Goal 1: Reduce the amount of code that needs to be duplicated

- Goal 2: Allow for polymorphism between types that have shared attributes

Concrete Motivation

—_— e ——

- Suppose we are writing some code for a car website (e.g., carmax)

- We might have some objects (and attributes) like:

- CAR: make, model, price, year
* MOTORCYCLE: make, model, ...,
* TRUCK: make, model, price, towing capacity

- Suppose we are writing some code for a business

- We might have some objects (and attributes) like:
* EMPLOYEE: name, homeAddress, workAddress, employeeld, ...
- MANAGER: name, homeAddress, workAddress, employeeld, office, ...

Concrete Motivation

—_— e ——

- Suppose we are writing some code for a car website (e.g., carmax)

- We might have some objects (and attributes) like:

- CAR: make, model, price, year
* MOTORCYCLE: make, model, ...,
* TRUCK: make, model, price, towing capacity

Do YOU SEE A
PROBLEM HERE?

- Suppose we are writing some code for a business

- We might have some objects (and attributes) like:
* EMPLOYEE: name, homeAddress, workAddress, employeeld, ...
- MANAGER: name, homeAddress, workAddress, employeeld, office, ...

Concrete Motivation

- Suppose we are writing some code for a car website (e.g., carmax)

- We might have some objects (and attributes) like:

* CAR: make, model, price, year 1) ALOT oF
* MOTORCYCLE: make, model, ..., DUPLICATE CODE
* TRUCK: make, model, price, towing capac

2) HAVE TO PROCESS
THESE OBJECTS AS
SEPARATE TYPES OF

N _ VARIABLES
- Suppose we are writing some code for a business

- We might have some objects (and attributes) like:
* EMPLOYEE: name, homeAddress, workAddress, employeeld, ..
- MANAGER: name, homeAddress, workAddress, employeeld, office, ...

Inheritance

—_— .

- Java provides inheritance as a mechanism for organizing your classes more
succinctly.

- Inheritance: Is a property of a class in which it has a parent class. The child class
iInherits the fields and the methods of the parent class.

Inheritance Idea

_

- In the figure below for a car dealership: Many fields are duplicated in the two classes

Car : make, model, price, horsePower, ... Truck : make, model, price, towPower, ...

Inheritance Idea

- Using inheritance, all vehicles has some shared properties, and cars/trucks have some
unique ones too

Vehicle : make, model, price

N

Car : horsePower, ... Truck : towPower, ...

Inheritance Idea

- Behavior can be duplicated as well

Vehicle : sell(), increasePrice()

/

N

Car : race(), ...

Truck : installTowHitch(), ...

Inheritance: is-a relationship

A subclass extends a superclass (abstracting common states and behaviors)
Use the is-a test to verify that your inheritance hierarchy is valid;
if X extends Y then X is-a Y must make sense

The is-a relationship works only in one direction; a lion is-a animal but not all
animals are lions

Inheritance Vocabulary

—_— e ——

- When a new class is defined from an existing class
- The new class is called the subclass (or child class)
- The existing class is called the superclass (or parent class)

- We would say the following:
* The subclass inherits from the superclass (methods and attributes)

- The subclass extends the superclass.

- A note on access modifier: | protected
- A subclass cannot access private fields or methods of the superclass

- Superclass can allow subclass access by declaring fields/methods as protected (visibility:
class itself, all subclasses, within same package)

Substitutability Principle

- We say: any subclass object (e.g., Jeep) is-a instance of a

superclass object (e.g., Car), and inherits its states and
behaviors

- Wherever we see a reference to a Car (superclass) object in

our code, we can legally replace that with a reference to Jeep
(any subclass object)

1s-a

Implies that we can substitute the subclass object in any way
that’s legal for the superclass

Composition vs Inheritance

—_— e ——

- Composition: has-a relationship Point
+ Point class, has a x- and y-cqordlnate » X-coordinate
- Living room, has a sofa, recliner, coffee table, tv * Y-coordinate
- Inheritance: Is-a relationship

public class Mammal extends Animal { }

Object B Animal B Mammal » Cat

public class Jeep extends Car { }

Object B Vehicle B Car B Jeep

Don’t Repeat Yourself...!

—_— . —————

- Many times we need a class that is only slightly different from an existing
class

- Don’t repeat yourself (DRY)! ~ Write once!

- Sometimes we just need to add something to the state or add/change the
behavior of a method

— Use Inheritance!

- Note:
- Every subclass extends its superclass
- Exception: We inherit Object without typing extends Object

&Otivations for Inheritance

- Benefits: Inheritance can help with the following:

1. Code reuse

Our new (subclass/child) class “extends” the existing (subclass/parent) class
and allows us to re-use code that they have in common

2. SW that better matches the real world problem
3. Flexible Design

Gives us flexibility at run-time in calling operations on
objects that might have different types (= run-time polymorphism)

Another Inheritance Example

—_— .

- Using inheritance, all Employees are a Person, and all Good Employees are Employees

- Employee extends Person

Person Class Person Class

- GoodEmployee extends Employee

Employee Class Employee Class

- Java allows you to use

Inheritance with the
EXTENDS keyword GoodEmployee Class Manager Class

public class Person {

// Notice, use of *protected*
protected String name;
protected String homeAddress;

/* Constructor */ “extends” means the class
public . Person(String n, String ha) { automatically gets all public
this.name = n; fields and methods of its parent

this.homeAddress = ha; '
}

public class Employee extends Person{

//fields
protected String workAddress;
protected int employeeld;

“super” 1s used to access

fields and methods in /* Constructor */
the parent. | public Employee(String n, String ha, String wa, int id){

super() will also call the — super(n,ha); // calling Person's constructor method

constructor of the parent th%s.wnrkﬂddress = was
class this.employeeld = 1id;

X Inheritance: super

How to access a superclass’s states and methods

—_— e ——

- The subclass object inherits state and behavior from the superclass object, but can override
these properties

- A subclass object may choose to access the superclass’s implementation of its overridden
method by using the keyword super

class Animal { // Animal: superclass
public String getName() {
return this.name;
|

class Cat extends Animal { // Cat: subclass
public String getName() {
return “Meow ” + super.getName();
} }

calling

*Inheritance: super()

How to call the superclass’s constructor method(s)

- Unless specified otherwise, the
subclass constructor calls the superclass
constructor with no arguments e.qg.

super();

- To call a superclass constructor, use

super () reserved word as a method. Has
to be the first statement of the subclass
constructor (can also pass arguments)

class Animal { // superclass
String name;
public Animal(String name) {

this.name = name;

- xR

class Cat extends Animal { /) subclass
int hoursOfSleep;
public Cat(String name, int hrs) {
super(name);
this.hoursOfSleep = hrs;

}
}

Implicit super constructor Animal() is undefined. Must explicitly call another constructor

Inheritance

S o S — e ——
Inheritance: Animal Example

* We can define one class in terms

class Animal Cat garfield = new Cat
eat() (20hrs, NoWay, Always); of another
sleepé) Cat garfield has: * Subclass gets (inherits) the state
reproauce t() -- Animal . .
J L et (fields) and behavior (methods)
sleep() - Cat of the superclass
class Mammal huntMice() -- Cat . Pdd ddit; 1
reproduce() purr() - Cat We can add additiona
Cat objects inherit all information (fields or methods)
characteristics of Mammal h bel
class 'Cat objects and, in turn, Animal to the subclass
f\jﬁmgce 0 RS * We have the ability to override
- sleep() in Cat overrides methods in the subclass to better
| in Animal (to includ
;ﬁ:m"ﬁs Q,','Q‘:,;p‘;,'“ e suit the required functionality of
- reproduce() in Mammal that class

overrides reproduce() in
Animal (mammals give live
birth)

Inheritance and Run-time Polymorphism Example:

public class Animal { public class TestCat {
public void move() { public static void main(String
S.0.P(“Animals can move!”); args[]) {
}
} Animal a = new Animal();
public class Cat extends Animal { Animal b = new Cat();
public void move() {
S.0.P(“Cats can walk & run”); a.move();
} b.move();

OUTPUT: Animals can movel!
Cats can walk & run

23

Practical Example: Trees

- There are some things that ALL trees have/do:
- Store tree nodes
- All tree nodes have left and right child

- All nodes have height
- You can insert into any tree (though different mechanism)

- Inheritance is perfect for this

Binary Tree

BST

AVL

Binary Tree

= Stores BinaryTreeNode root

= pre-order, post-order, in-order traversal methods
BST

= Does everything Binary Tree does

= |nserts in sorted order, removes nodes

= Find()
AVL

= Does everything a BST does.

= Adds tree rotation methods

= |nserts and removes same way then rotates

Practical
Example:
Trees

25

Practical Example: Trees

—_— .

- Binary Tree: things ALL binary trees have/do
public class BinaryTree<T> {
protected TreeNode< T > root = null;
/* IMPLEMENT THESE METHODS FOR HW */
public void printInOrder () ;
public void printPreOrder () ;
public void printPostOrder () ;

public class TreeNode<T> {
protected T data = null;
protected TreeNode<T> left = null;
protected TreeNode< T > right = null;
protected int height = 0;

Practical Example: BSTs

- Binary Search Tree: things only BSTs do

- What is this “T extends Comparable <T>” thing?!?

public class BinarySearchTree< T extends Comparable< T > >
extends BinaryTree< T > implements Tree< T >{

public void insert(T data)

public boolean find(T data)

public void remove(T data)

public TreeNode< T > findMax(TreeNode< T > curNode)

Practical Example: AVL. Trees

—_— . —————

- AV L Tree: things only AVLs do

- Notice that we have insert() method again??

public class AVLTree< T extends Comparable< T >>
extends BinarySearchTree< T >{

@override
public void insert(T data)

@override
public void remove(T data)

private TreeNode< T > balance(TreeNode< T > curNode)
private TreeNode< T > rotateRight(TreeNode< T > curhode)
private TreeNode< T > rotatelLeft(TreeNode< T > curNode)

private int balanceFactor(TreeNode< T > node)

Practical Example: AVL. Trees

—_— e ——

- Notice that AVL Tree and BST both had an insert() method with the same parameters.

- This is called overriding a method.

- The parent class implemented the method already, but the child class wants to override that

Implementation, and reimplement it slightly differently.
- Sometimes child will use super.methodHere() to call the parent version and then

add more functionality on top
- Sometimes child class will totally rewrite the method.

Practical Example: AVL. Trees

—_— . —————

- How does java know which insert() method to actually execute?

- Jave uses Dynamic Dispatch, meaning the run-time type of the object is examined, and the
method in that class is automatically invoked.

EiI"IEII‘}FEEEI‘ChTF‘EE{ > mylree = new AVLTree<

myTree.insert(5); //AVLTree.insert() 1is called.

