
CS 2100: Data Structures & Algorithms 1

Inheritance
A Re-emphasis and Proper Introduction

Dr. Nada Basit // bas i t @ v i rg in ia . ed u

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Basic Inheritance

3

Motivation

• Sometimes we want to create objects that naturally share a lot of functionality.

 e.g., AVL trees and BST both store and use binary nodes

 e.g., find() in AVL and BST works the same way

• Goal 1: Reduce the amount of code that needs to be duplicated

• Goal 2: Allow for polymorphism between types that have shared attributes

4

Concrete Motivation

• Suppose we are writing some code for a car website (e.g., carmax)

• We might have some objects (and attributes) like:

 CAR: make, model, price, year

 MOTORCYCLE: make, model, ...,

 TRUCK: make, model, price, towing capacity

• Suppose we are writing some code for a business

• We might have some objects (and attributes) like:

 EMPLOYEE: name, homeAddress, workAddress, employeeId, …

 MANAGER: name, homeAddress, workAddress, employeeId, office, …

5

Concrete Motivation

• Suppose we are writing some code for a car website (e.g., carmax)

• We might have some objects (and attributes) like:

 CAR: make, model, price, year

 MOTORCYCLE: make, model, ...,

 TRUCK: make, model, price, towing capacity

• Suppose we are writing some code for a business

• We might have some objects (and attributes) like:

 EMPLOYEE: name, homeAddress, workAddress, employeeId, …

 MANAGER: name, homeAddress, workAddress, employeeId, office, …

6

DO YOU SEE A

PROBLEM HERE?

1) A LOT OF

DUPLICATE CODE

2) HAVE TO PROCESS

THESE OBJECTS AS

SEPARATE TYPES OF

VARIABLES

Concrete Motivation

• Suppose we are writing some code for a car website (e.g., carmax)

• We might have some objects (and attributes) like:

 CAR: make, model, price, year

 MOTORCYCLE: make, model, ...,

 TRUCK: make, model, price, towing capacity

• Suppose we are writing some code for a business

• We might have some objects (and attributes) like:

 EMPLOYEE: name, homeAddress, workAddress, employeeId, …

 MANAGER: name, homeAddress, workAddress, employeeId, office, … 7

Inheritance

• Java provides inheritance as a mechanism for organizing your classes more

succinctly.

• Inheritance: Is a property of a class in which it has a parent class. The child class

inherits the fields and the methods of the parent class.

8

Inheritance Idea

• In the figure below for a car dealership: Many fields are duplicated in the two classes

9

Car : make, model, price, horsePower, … Truck : make, model, price, towPower, …

Inheritance Idea

• Using inheritance, all vehicles has some shared properties, and cars/trucks have some

unique ones too

10

Vehicle : make, model, price

Car : horsePower, … Truck : towPower, …

Inheritance Idea

• Behavior can be duplicated as well

11

Vehicle : sell(), increasePrice()

Car : race(), … Truck : installTowHitch(), …

🐵

🐱

🐶

🐯

Dog
class

Cat
class

Tiger
class

Monkey
class

•

•

•

• When a new class is defined from an existing class

 The new class is called the subclass (derived class or child class)

 The existing class is called the superclass (base class or parent class)

• We would say the following:

 The subclass inherits from the superclass (methods and attributes)

 The subclass extends the superclass.

• A note on access modifier: protected
 A subclass cannot access private fields or methods of the superclass

 Superclass can allow subclass access by declaring fields/methods as protected (visibility:
class itself, all subclasses, within same package)

Inheritance Vocabulary

13

Substitutability Principle
• We say: any subclass object (e.g., Jeep) is-a instance of a

superclass object (e.g., Car), and inherits its states and

behaviors

• Wherever we see a reference to a Car (superclass) object in

our code, we can legally replace that with a reference to Jeep

(any subclass object)

• Implies that we can substitute the subclass object in any way

that’s legal for the superclass

is-a

Jeep

Car

14

Composition vs Inheritance

• Composition: has-a relationship

 Point class, has a x- and y-coordinate

 Living room, has a sofa, recliner, coffee table, tv

• Inheritance: is-a relationship

public class Mammal extends Animal { }

public class Jeep extends Car { }

Object Animal Mammal Cat

Point

• X-coordinate

• Y-coordinate

Object Vehicle Car Jeep

15

Don’t Repeat Yourself…!

• Many times we need a class that is only slightly different from an existing

class

 Don’t repeat yourself (DRY)! ~ Write once!

 Sometimes we just need to add something to the state or add/change the
behavior of a method

→Use inheritance!

• Note:

 Every subclass extends its superclass

 Exception: We inherit Object without typing extends Object

16

• Benefits: Inheritance can help with the following:

1. Code reuse

 Our new (subclass/child) class “extends” the existing (subclass/parent) class
and allows us to re-use code that they have in common

2. SW that better matches the real world problem

3. Flexible Design

 Gives us flexibility at run-time in calling operations on
objects that might have different types (→run-time polymorphism)

Motivations for Inheritance

17

Another Inheritance Example

• Using inheritance, all Employees are a Person, and all Good Employees are Employees

• Employee extends Person

• GoodEmployee extends Employee

• Java allows you to use

inheritance with the

EXTENDS keyword

18

Person Class

Employee Class

GoodEmployee Class

Person Class

Employee Class

Manager Class

19

“extends” means the class

automatically gets all public

fields and methods of its parent

“super” is used to access

fields and methods in

the parent.

super() will also call the

constructor of the parent

class

Inheritance: super

• The subclass object inherits state and behavior from the superclass object, but can override

these properties

• A subclass object may choose to access the superclass’s implementation of its overridden

method by using the keyword super

class Animal { // Animal: superclass
public String getName() {

return this.name;
} }
class Cat extends Animal { // Cat: subclass

public String getName() {
return “Meow ” + super.getName();

} }

calling

20

Inheritance: super()

• Unless specified otherwise, the

subclass constructor calls the superclass

constructor with no arguments e.g.

super();

• To call a superclass constructor, use

super() reserved word as a method. Has

to be the first statement of the subclass

constructor (can also pass arguments)

class Animal { // superclass
String name;
public Animal(String name) {

this.name = name;
}

}

class Cat extends Animal { // subclass
int hoursOfSleep;
public Cat(String name, int hrs) {

super(name);
this.hoursOfSleep = hrs;

}
}

Implicit super constructor Animal() is undefined. Must explicitly call another constructor

Inheritance

22

•

•

•

•

public class Animal {

public void move() {

S.O.P(“Animals can move!”);

}

}

public class Cat extends Animal {

public void move() {

S.O.P(“Cats can walk & run”);

}

}

public class TestCat {

public static void main(String

args[]) {

//Animal reference & object

Animal a = new Animal();

//Animal reference, Cat obj.

Animal b = new Cat();

a.move();// method in Animal

b.move();// method in Cat

OUTPUT: Animals can move!
Cats can walk & run

23

Practical Example: Trees

• There are some things that ALL trees have/do:

 Store tree nodes

 All tree nodes have left and right child

 All nodes have height

 You can insert into any tree (though different mechanism)

• Inheritance is perfect for this

24

Binary Tree

BST

AVL

Practical
Example:
Trees

25

Practical Example: Trees

• Binary Tree: things ALL binary trees have/do
public class BinaryTree<T> {

protected TreeNode< T > root = null;

/* IMPLEMENT THESE METHODS FOR HW */

public void printInOrder();

public void printPreOrder();

public void printPostOrder();

}

public class TreeNode<T> {

protected T data = null;

protected TreeNode<T> left = null;

protected TreeNode< T > right = null;

protected int height = 0;

}
26

Practical Example: BSTs

• Binary Search Tree: things only BSTs do

• What is this “T extends Comparable <T>” thing?!?

27

Practical Example: AVL Trees

• AVLTree: things only AVLs do

• Notice that we have insert() method again??

28

Practical Example: AVL Trees

• Notice that AVL Tree and BST both had an insert() method with the same parameters.

• This is called overriding a method.

• The parent class implemented the method already, but the child class wants to override that

implementation, and reimplement it slightly differently.

 Sometimes child will use super.methodHere() to call the parent version and then
add more functionality on top

 Sometimes child class will totally rewrite the method.

29

Practical Example: AVL Trees

• How does java know which insert() method to actually execute?

• Jave uses Dynamic Dispatch, meaning the run-time type of the object is examined, and the

method in that class is automatically invoked.

30

