
CS 2100: Data Structures & Algorithms 1

Trees
~ AVL Trees ~

Dr. Nada Basit // bas i t@virg in ia .edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Announcements / Reminders

• Quiz Retakes – Modules 4-6

 Monday, March 28, 2022

 Choose 1

 No new Quiz!

 Reminder: quiz retakes are 100% optional; if you’re happy with your quiz scores,
no need to retake anything

[See schedule on our webpage]

3

AVL Trees

4

Animation Tool

• A good AVL tree animation too is HERE

 [https://visualgo.net/en/bst?mode=AVL]

• You’re welcome to play around with this visual animation of AVL trees as you

review the material for this topic

5

https://visualgo.net/en/bst?mode=AVL

AVL Trees

• Motivation: to guarantee Θ(log n) running time on find, insert, and remove

• Idea: Keep tree balanced after each operation

• Solution: AVL trees

 Named after the inventors, Adelson-Velskii and Landis

6

AVL Tree Structure Property

• An AVL Tree is a self-balancing Binary Search Tree

 Where the difference between heights of left and right
sub-trees cannot be more than 1 for all nodes

• Put another way…

 For every node in the tree, the height of the left and
right sub-trees differs at most by 1

7

Reminder About Height (Binary Tree)

• Height Definition

 HEIGHT of a node: is the longest path (# edges) from that node to a leaf

 Thus, all leaves have a height of zero (0); Height of tree = height of the root

8

AVL Balance Factor

• Each node of a BST holds:

 The data

 Left and right child references

• An AVL tree also holds a balance factor

 Balance factor = The height of the right sub-tree minus the height of the left sub-tree

 Can be computed on the fly, as well, but that's VERY slow

9

Structure and Balanced Nature of AVL
Tree (Example of an AVL Tree and a Tree

that is not.) 10

Reminder: Both of these trees are examples of
Binary Search Trees! (NOT AVL TREES)

11

AVL Tree Balance

• “Balanced” trees

 Balance Factor = 0 balanced

 Balance Factor = 1 the right sub-tree is one longer than the left sub-tree

 Balance Factor = -1 the left sub-tree is one longer than the right sub-tree

• “Unbalanced” trees

 Balance Factor of 2 or -2

 We will fix the tree once we discover an unbalanced tree (indicated by above Balance
Factor)

 Question: Will a node ever have a Balance Factor of 3 or -3 (or more)?

12

AVL Tree With Balance Factors

• Numbers in parenthesis represent the Balance Factor for each node in this AVL Tree:

13

Explanation Why This Tree is NOT an AVL Tree

• The Balance Factor for node “10” is +2

 Left sub-tree height: 0

 Right sub-tree height: 2

 Difference > 1 !

14

AVL Trees: Find and Insert

15

• Find method: same as BST find

• Insert method: same as BST insert, except might need to “fix” the AVL tree after the insert

(via rotations)

• Runtime analysis:

 Θ(d), where d is the depth of the node being found/inserted

• Question: What is the maximum height of an n-node AVL tree?

• Question: What is the maximum height of an n-node BST tree?

AVL Trees: Find and Insert

16

• Find method: same as BST find

• Insert method: same as BST insert, except might need to “fix” the AVL tree after the insert

(via rotations)

• Runtime analysis:

 Θ(d), where d is the depth of the node being found/inserted

• Question: What is the maximum height of an n-node AVL tree? log(n)

• Question: What is the maximum height of an n-node BST tree? (n-1) or log(n)

AVL Tree Operations

• Perform the operation (insert, delete)

• Move back up to the root, updating the balance factors

 Why only those nodes?

 Because those are the only ones who have had their subtrees altered

 Traversed one path to add or delete node, so check nodes on that path alone

 No need to check left and right

 Fix at the lowest imbalance

 Fixing this will fix everything above it, too since they share the same sub-tree

• Do tree rotations where the balance factors are 2 or -2

17

Quick Clarification…

• When performing insert or delete, we only insert or delete ONE node at a time

18

How Many Times To “Fix” The Tree?

• Any single insert will only modify the balance factor by one

 So, we fix the lowest off-balance nodes

 Then everything above it is then balanced

• This means that we will have to only look at the bottom two unbalanced nodes

19

AVL Insert

• Let x be the deepest node where imbalance occurs

• Four cases where the insert happened:

1. In the left subtree of the left child of x

2. In the right subtree of the left child of x

3. In the left subtree of the right child of x

4. In the right subtree of the right child of x

• Cases 1 & 4: perform a single rotation

• Cases 2 & 3: perform a double rotation

20

Discussion of Cases
Rotation Cases 1 through 4 for an AVL Tree

21

AVL Single Right Rotation

5 is imbalanced, so we need to rotate on 5

22

Notice that the old right subtree
of 3 becomes new left subtree of 5

AVL Single Right Rotation: GENERAL CASE

23

AVL Single Left Rotation

5 is imbalanced, so we need to rotate on 5

24

Notice that the old left subtree of
7 becomes new right subtree of 5

AVL Single Left Rotation: GENERAL CASE

25

AVL Single Left Rotation:
ROTATELEFT METHOD

1. In a new node (“rNew”) save current Node’s (GREEN-I) right node
(curNode.right) (ORANGE-RC)

2. In a new node (“RL”) save the left subtree of the current Node’s right node
(curNode.right.left) (BLUE-RLC)

3. With the rotation, the right node (“rNew”) (ORANGE-RC) will have the current
Node (GREEN) as a left child

4. With the rotation, the current Node’s (GREEN-I) has “RL” node as its right child

26

AVL Single Left Rotation:
ROTATELEFT METHOD

Now that we’re done update height:

5. Set the current Node’s (GREEN-I) height as the max of the height of the left and
right child (plus 1 for itself)

6. Set the right node (“rNew”) (ORANGE-RC) height as the max of the height of the
left and right child (plus 1 for itself)

7. Finally, return the right node (“rNew”) (ORANGE-RC) as it is the root of the sub-
tree

27

Cases 2 and 3

• Attempt a single rotation on the following:

28

Cases 2 and 3

• Attempt a single rotation on the following:

 What happened?? Still imbalanced!!

29

Before:

DOUBLE Rotation

• A double rotation is used to get around this problem.

• Double right rotation:

 rotate left on the left child of imbalanced node

 then rotate right on the imbalanced node.

30

Double Right Rotation Example

Double right rotate on 10

Rotate left on 5, then right on 10 31

Double Left Rotation

• Analogous to the other one

• Double left rotation:

 rotate right on the right child of imbalanced node

 then rotate left on the imbalanced node.

32

AVL Insert (one more time)

• Let x be the deepest node where imbalance occurs

• Four cases where the insert happened:

1. In the left subtree of the left child of x

2. In the right subtree of the left child of x

3. In the left subtree of the right child of x

4. In the right subtree of the right child of x

• Cases 1 & 4: perform a single rotation

• Cases 2 & 3: perform a double rotation

33

34A
L

L
 T

H
E

 T
R

E
E

 R
O

T
A

T
IO

N
S

AVL Tree: Runtime Analysis

• Find: Θ(log n) time: height of tree is always Θ(log n)

• Insert: Θ(log n) time: find() takes Θ(log n), then may have to visit every node on the path

back up to root to perform up to 2 single rotations

• Remove: Θ(log n): left as an exercise

• Print: Θ(n): no matter the data structure, it will still take n steps to print n elements

35

