
CS 2100: Data Structures & Algorithms 1

Trees
~ AVL Trees ~

Dr. Nada Basit // bas i t@virg in ia .edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Announcements / Reminders

• Quiz Retakes – Modules 4-6

 Monday, March 28, 2022

 Choose 1

 No new Quiz!

 Reminder: quiz retakes are 100% optional; if you’re happy with your quiz scores,
no need to retake anything

[See schedule on our webpage]

3

AVL Trees

4

Animation Tool

• A good AVL tree animation too is HERE

 [https://visualgo.net/en/bst?mode=AVL]

• You’re welcome to play around with this visual animation of AVL trees as you

review the material for this topic

5

https://visualgo.net/en/bst?mode=AVL

AVL Trees

• Motivation: to guarantee Θ(log n) running time on find, insert, and remove

• Idea: Keep tree balanced after each operation

• Solution: AVL trees

 Named after the inventors, Adelson-Velskii and Landis

6

AVL Tree Structure Property

• An AVL Tree is a self-balancing Binary Search Tree

 Where the difference between heights of left and right
sub-trees cannot be more than 1 for all nodes

• Put another way…

 For every node in the tree, the height of the left and
right sub-trees differs at most by 1

7

Reminder About Height (Binary Tree)

• Height Definition

 HEIGHT of a node: is the longest path (# edges) from that node to a leaf

 Thus, all leaves have a height of zero (0); Height of tree = height of the root

8

AVL Balance Factor

• Each node of a BST holds:

 The data

 Left and right child references

• An AVL tree also holds a balance factor

 Balance factor = The height of the right sub-tree minus the height of the left sub-tree

 Can be computed on the fly, as well, but that's VERY slow

9

Structure and Balanced Nature of AVL
Tree (Example of an AVL Tree and a Tree

that is not.) 10

Reminder: Both of these trees are examples of
Binary Search Trees! (NOT AVL TREES)

11

AVL Tree Balance

• “Balanced” trees

 Balance Factor = 0 balanced

 Balance Factor = 1 the right sub-tree is one longer than the left sub-tree

 Balance Factor = -1 the left sub-tree is one longer than the right sub-tree

• “Unbalanced” trees

 Balance Factor of 2 or -2

 We will fix the tree once we discover an unbalanced tree (indicated by above Balance
Factor)

 Question: Will a node ever have a Balance Factor of 3 or -3 (or more)?

12

AVL Tree With Balance Factors

• Numbers in parenthesis represent the Balance Factor for each node in this AVL Tree:

13

Explanation Why This Tree is NOT an AVL Tree

• The Balance Factor for node “10” is +2

 Left sub-tree height: 0

 Right sub-tree height: 2

 Difference > 1 !

14

AVL Trees: Find and Insert

15

• Find method: same as BST find

• Insert method: same as BST insert, except might need to “fix” the AVL tree after the insert

(via rotations)

• Runtime analysis:

 Θ(d), where d is the depth of the node being found/inserted

• Question: What is the maximum height of an n-node AVL tree?

• Question: What is the maximum height of an n-node BST tree?

AVL Trees: Find and Insert

16

• Find method: same as BST find

• Insert method: same as BST insert, except might need to “fix” the AVL tree after the insert

(via rotations)

• Runtime analysis:

 Θ(d), where d is the depth of the node being found/inserted

• Question: What is the maximum height of an n-node AVL tree? log(n)

• Question: What is the maximum height of an n-node BST tree? (n-1) or log(n)

AVL Tree Operations

• Perform the operation (insert, delete)

• Move back up to the root, updating the balance factors

 Why only those nodes?

 Because those are the only ones who have had their subtrees altered

 Traversed one path to add or delete node, so check nodes on that path alone

 No need to check left and right

 Fix at the lowest imbalance

 Fixing this will fix everything above it, too since they share the same sub-tree

• Do tree rotations where the balance factors are 2 or -2

17

Quick Clarification…

• When performing insert or delete, we only insert or delete ONE node at a time

18

How Many Times To “Fix” The Tree?

• Any single insert will only modify the balance factor by one

 So, we fix the lowest off-balance nodes

 Then everything above it is then balanced

• This means that we will have to only look at the bottom two unbalanced nodes

19

AVL Insert

• Let x be the deepest node where imbalance occurs

• Four cases where the insert happened:

1. In the left subtree of the left child of x

2. In the right subtree of the left child of x

3. In the left subtree of the right child of x

4. In the right subtree of the right child of x

• Cases 1 & 4: perform a single rotation

• Cases 2 & 3: perform a double rotation

20

Discussion of Cases
Rotation Cases 1 through 4 for an AVL Tree

21

AVL Single Right Rotation

5 is imbalanced, so we need to rotate on 5

22

Notice that the old right subtree
of 3 becomes new left subtree of 5

AVL Single Right Rotation: GENERAL CASE

23

AVL Single Left Rotation

5 is imbalanced, so we need to rotate on 5

24

Notice that the old left subtree of
7 becomes new right subtree of 5

AVL Single Left Rotation: GENERAL CASE

25

AVL Single Left Rotation:
ROTATELEFT METHOD

1. In a new node (“rNew”) save current Node’s (GREEN-I) right node
(curNode.right) (ORANGE-RC)

2. In a new node (“RL”) save the left subtree of the current Node’s right node
(curNode.right.left) (BLUE-RLC)

3. With the rotation, the right node (“rNew”) (ORANGE-RC) will have the current
Node (GREEN) as a left child

4. With the rotation, the current Node’s (GREEN-I) has “RL” node as its right child

26

AVL Single Left Rotation:
ROTATELEFT METHOD

Now that we’re done update height:

5. Set the current Node’s (GREEN-I) height as the max of the height of the left and
right child (plus 1 for itself)

6. Set the right node (“rNew”) (ORANGE-RC) height as the max of the height of the
left and right child (plus 1 for itself)

7. Finally, return the right node (“rNew”) (ORANGE-RC) as it is the root of the sub-
tree

27

Cases 2 and 3

• Attempt a single rotation on the following:

28

Cases 2 and 3

• Attempt a single rotation on the following:

 What happened?? Still imbalanced!!

29

Before:

DOUBLE Rotation

• A double rotation is used to get around this problem.

• Double right rotation:

 rotate left on the left child of imbalanced node

 then rotate right on the imbalanced node.

30

Double Right Rotation Example

Double right rotate on 10

Rotate left on 5, then right on 10 31

Double Left Rotation

• Analogous to the other one

• Double left rotation:

 rotate right on the right child of imbalanced node

 then rotate left on the imbalanced node.

32

AVL Insert (one more time)

• Let x be the deepest node where imbalance occurs

• Four cases where the insert happened:

1. In the left subtree of the left child of x

2. In the right subtree of the left child of x

3. In the left subtree of the right child of x

4. In the right subtree of the right child of x

• Cases 1 & 4: perform a single rotation

• Cases 2 & 3: perform a double rotation

33

34A
L

L
 T

H
E

 T
R

E
E

 R
O

T
A

T
IO

N
S

AVL Tree: Runtime Analysis

• Find: Θ(log n) time: height of tree is always Θ(log n)

• Insert: Θ(log n) time: find() takes Θ(log n), then may have to visit every node on the path

back up to root to perform up to 2 single rotations

• Remove: Θ(log n): left as an exercise

• Print: Θ(n): no matter the data structure, it will still take n steps to print n elements

35

