
CS 2100: Data Structures & Algorithms 1

Trees
~ Binary Search Trees (Part II) ~

Dr. Nada Basit // bas i t@virg in ia .edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Topics

Finish discussing BST Find and Insert

BST FindMin/FindMax, Remove, Runtime Analysis

3

Binary Search Trees
Finalize discussion on BST Find and BST Insert

Reminder of CompareTo()

4

Binary Search Trees
BST FindMin; BST FindMax; BST Remove

Runtime Analysis on BST operations

5

BST: FindMin() / FindMax()

• Given the way data is stored in a BST, there is a simple

way to figure out the smallest (minimum) and largest

(maximum) elements in the data set.

• To find the maximum element, traverse RIGHT until

you arrive at a node that has no right-child/subtree.

 The data value of this node is the maximum element
in the BST

 In this example, 13 is the largest (max) value

6

BST: FindMin() / FindMax()

• Given the way data is stored in a BST, there is a simple

way to figure out the smallest (minimum) and largest

(maximum) elements in the data set.

• To find the minimum element, traverse LEFT until

you arrive at a node that has no left-child/subtree.

 The data value of this node is the minimum element
in the BST

 In this example, 1 is the smallest (min) value

7

BST: Remove

• Removing from a BST disrupts the tree structure

 Operation is slightly more complicated

• Basic idea:

 Find node to be removed

 THREE CASES: WHAT DO YOU DO?

1. Node has no children (degree 0) delete node

2. Node has one child (degree 1) replace node with its only child

3. Node has two children (degree 2) find the next largest (or smallest)
node to replace it – “Successor Node”

8

BST: Remove [Case 1] – Remove(13)

• No children – so just remove the node

 Make sure parent pointer now points to NULL

9

BST: Remove [Case 2] – Remove(10)

• One child – Make parent pointer point to child

10

BST: Remove [Case 3] – Remove(5)

• Two children –

 Step 1: Find successor

 Next “largest” element

 Minimum value in right sub-tree: 6

 Next “smallest” element

 Maximum value in left sub-tree: 4

11

BST: Remove [Case 3] – Remove(5)

• Step 2: Replace deleting node with successor

 Deleted node (5) overwritten with successor (6)

12

BST: Remove [Case 3] – Remove(5)

• Step 3: Delete successor

 Recursively call remove(6) – successor will ALWAYS have 0 or 1 child. Why?

13

Review Successor…

14

Find Successor of 38

15

• Minimum of
right subtree
(leftmost node)

• Which is the
next largest
number

15

Remove: Another Example

• Delete 20 from the binary search tree

16

16

Remove: Another Example

• Delete 20 from the binary search tree

• Need to find a successor for 20: next largest node!

17

17

• Delete 20 from the binary search tree

• Left-most node of the right subtree

Remove: Another Example

18

18

• Delete 20 from the binary search tree

• Easy-case: move leaf 23 to replace 20

Remove: Another Example

19

19

• What are the possible successors of ‘X’?

• Right-most node of the LEFT subtree → 10

• Left-most node of the RIGHT subtree → 23

Successors of ‘X’

20

20

BST: Height

• Worst Case Height: Linear. Just a straight line

21

BST: Height

• Best Case Height: log(n) where n is num nodes Why?

22

Perfect Binary Tree

• A “perfect” binary tree has all leaves at same depth

• Every node has 0 or 2 children

23

