
CS 2100: Data Structures & Algorithms 1

Trees
~ Binary Search Trees ~

Dr. Nada Basit // bas i t@virg in ia .edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Announcements / Reminders

• Reminder of Homework Late Policy: [Announcement sent 02/14/2022]

 “Homework 1 (coding)” for each module:

 Official due date: Wednesday by 11:59pm ET

 Late period (with 10% penalty): 1 week; until the following Wednesday by 11:59pm ET

 “Homework 2 (analysis)” for each module [if applicable]:

 Official due date: Friday by 11:59pm ET

 Late period (with 10% penalty): 3 days; until following Monday by 11:59pm ET

 Manage your time wisely, seek help (TAs or Profs) when needed, use grace period as your
extension if need be.

3

Any Questions about: Preoder, Inorder, Postorder

• In Preorder, the root

is visited before (pre)

the subtrees traversals

• In Inorder, the root is

visited in-between left

and right subtree traversal

• In Postorder, the root

is visited after (post)

the subtrees traversals

Preorder Traversal:

1. Visit the root

2. Traverse left subtree

3. Traverse right subtree

Inorder Traversal:

1. Traverse left subtree

2. Visit the root

3. Traverse right subtree

Postorder Traversal:

1. Traverse left subtree

2. Traverse right subtree

3. Visit the root 4

Any Questions about:
[3 methods]

Let’s do an example first…

(Notice: this is a Binary Search Tree!) • pre-order: (root, left, right)

15, 5, 3, 12, 10, 6, 7,

13, 16, 20, 18, 23

• in-order: (left, root, right)

3, 5, 6, 7, 10, 12, 13,

15, 16, 18, 20, 23

• post-order: (left, right, root)

3, 7, 6, 10, 13, 12, 5,

18, 23, 20, 16, 15
5

Binary Search Trees: Motivation

• It would be nice to find/search for items quickly

 Want a fast look up time

 Want to handle inserts and deletes into list

 Idea: store items in sorted order

• Lists, like ArrayList or LinkedList aren’t ideal

 If not sorted: O(n) lookup (Linear search)

 If can make use of Binary Search: O(log n) lookup

 Must pay O(n log n) to sort beforehand

 If we insert or remove items, sort may become invalid!

• Is there a way to combine what we have been talking about to get the

best of both worlds?
6

Yes…!

Binary Search Trees
The utility is in the name… Facilitating fast SEARCH!

7

A Binary Search Tree (BST) is a kind of Binary Tree

• A Binary tree

 Maximum 2 children per node

 Each node has a data item, e.g. value (or key), and pointers to
it’s left and right child nodes:

 In reality, any arrow/edge not shown is a null pointer.

8

Binary Search Trees (BSTs)

• Each node has a key value that can be compared

• Binary Search Tree property:

 For a given node, which we will call the root...

 Every node in left subtree has a key whose value is less than the root's key value,
AND

 Every node in right subtree has a key whose value is greater than the root's key value

• We assume that duplicate values are not allowed

9

Binary Search Trees: Cool Property

• How could we traverse a BST so that the nodes are

visited in sorted order?

 In-order traversal: left tree, node, right tree

• It’s a very useful property about Binary Search Trees.

• Note: If you perform in-order traversal on a regular

Binary Tree (not a BST) then the nodes are NOT

visited in sorted order!

10

Example of a Binary Search Tree

11

Another example of a Binary Search Tree

12

Counter-Example (not a BST)

4

181062

115

8

20

21NOT A

BINARY SEARCH TREE

7

15

Three

child

nodes

Left node not

less than

parent

node (20)

13

Counter-Example (not a BST)

14

Why is this not a Binary Search Tree?

This is a Binary Tree.

The Difference Between Binary Trees and BSTs

• Both binary trees and binary search trees have zero, one, or two children per node

• But a binary search tree is sorted

• However, most people, when they say "binary tree", really mean a "binary search tree"

• Note that we assume that we can NOT have duplicate elements in a BST

15

Let’s Practice –
Can You Identify BSTs?
Are the following trees Binary Search Trees (BSTs) or not?

16

Question!

• Is this a binary search tree?

17

17

Question!

• Is this a binary search tree?

• No! Binary search tree property not preserved

18

18

Question!

• Is this a binary search tree?

19

Question!

• Is this a binary search tree?

• No! Binary search tree property not preserved
20

• Are these binary search trees?

(a) (b)

Question!

21

• Are these binary search trees? Yes! Binary search tree properties are preserved

(a)

Question!

22

• Are these binary search trees?
Yes! Binary search tree properties are preserved

(a) (b)

Question!

23

• Are these binary search trees? Yes!

• However, this tree is unbalanced!

 O(n) to find 57!

 essentially linear! 

 This is an ordered list

• A balanced binary tree

 Guarantees height of child subtrees differ
by no more than 1

 Is better! Produces O(log n) runtimes

Question!

24

Question!

• Is this a binary search tree?

25

25

Question!

• Is this a binary search tree?

• No! It is not even a binary tree!
26

BST Operations
Find and Insert

27

BST: Find

• Compare value to be found to key of the root of the tree

 If they are equal, then done

 If not equal, recurse depending on which half of tree the value should be in if it is
in the tree

 If you hit a NULL pointer, then you have "run off" the bottom of the tree, and the
value is not in the tree

28

BST: Find Example

• Try to find(6)

• Always start at the root of the

tree!

• 6 is GREATER than 5,

go RIGHT

29

BST: Find Example

• Try to find(6)

• 6 is LESS than 10,

go LEFT

30

BST: Find Example

• Try to find(6)

• Found it!

• The value to be found (6)

matches the key of the

root of the tree (where we

are, which is 6)

31

BST: Find Java Code

• Here is how we might write the find() method for a Binary Search Tree where the data

value is an int (very easy to compare)

• It looks fine, but we can do better / make it more general/useful

32

BST: Find Java Code

• What do we do if you are storing Objects in Java? (Complex types; your own Objects…)

• Solution: Use the compareTo() method

33

BST: Find (Final Java Code Solution)

• Programmers using your tree doesn’t know what curNode is…

• Helper method hides this (form of abstraction).

34

compareTo() and the
Comparable Interface
Needed Detour!!

35
This Photo by Unknown Author is licensed under CC BY-SA-NC

http://therunman.blogspot.com/2007/11/detour-heather-doiron-past-present.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

Comparable Interface

• Collections Framework provides a Comparable interface

 Defines the of objects of a class

36

Implementing Comparable
• The Comparable interface requires only one method:

 .compareTo(T o) – compare this object to “o”

• We must implement the interface and define T:

public class PhoneBookEntry implements Comparable<PhoneBookEntry> {

...

@Override

public int compareTo(PhoneBookEntry o) {...}

}
• Comparable interface is generic, where you must include the type of the class

• The type inside the <> defines T

Using Generics!

Fill in actual type!

37

• Implement .compareTo(T o) to fulfill the contract

public int compareTo(T o) { … }

 Format: string1.compareTo(string2) //returns an int

 Programming convention: Return value as follows:

zero if the same

negative value if first item strictly less than second

positive value if first item strictly greater than second

 We don’t care about the actual value

Implementing Comparable ~ fulfilling the contract

38

In Order To Store YOUR Items Into A BST…

• If you ever want to put your own objects in a Binary Search Tree (BST), you

must:

1. Make your class

2. Implement (write) the in your class

• How to write compareTo()?

 Think about state-variables that determine natural order

 Compare them and return proper-value

 What makes one of your objects less-than or greater-than the other?

39

Example: To Be Able to Add Students to a BST…
• Student class “ ” the

Comparable interface:
Comparable<Student>

• Must fulfil contract: override

the compareTo() method stub

• St1.compareTo(St2);

• Body: define the

of the class

• Now that we can say one

student is > or < another, we

can create a BST of type

Student (otherwise we can’t!)

40

40

41

BST: Insert (very similar to Find!)

• Find an element in the tree

 Compare with root, if less traverse left, else traverse right; repeat

 Stops when found or at a leaf

 Sounds like binary search!

 Time complexity: O(log n), worst case height of the tree

• Insert a new element into the tree

 Easy! Do a find operation. At the leaf node, add it!

 Remember: add it to the correct side (left or right)

42

BST: Insert (Final Java Code Solution)
• Idea: Move down the tree like in the find() method to discover location

 Make and put the new node when you encounter a null subtree

43

Find and Insert in BST

• Find: look for where it should be

• If not there, that’s where you insert

44

Find 23 in BST

• Always start at the root of the tree!

• 23 is LESS than 30, so go LEFT

45

Find 23 in BST

• Always start at the root of the tree!

• 23 is GREATER than 20, so go RIGHT

46

Find 23 in BST

• Always start at the root of the tree!

• 23 is LESS than 25, so go LEFT

47

Find 23 in BST

• Always start at the root of the tree!

• We found it! If not, 23 would be in this sub-tree

Found

it!

48

Binary Search Tree vs Array

Source:

penjee.com

• Can find an element much quicker using a BST

49

BST: Insert

• Where do we insert a new element?

 Run find() method to determine where the element should have been

 Add the new node at that position

50

BST: Insert Example

• Insert 33 into the following binary search tree

51

BST: Insert Example

• Insert 33 into the following binary search tree

33 is greater than 30

52

BST: Insert Example

• Insert 33 into the following binary search tree

33 is less than 40

53

BST: Insert Example

• Insert 33 into the following binary search tree

If 33 existed, it would

be in the LEFT subtree of 40.

But 40 does not have a left

child: 33 should go here!

54

BST: Insert Example

• Insert 33 into the following binary search tree

Add 33 as left child of 40

55

