IVERSITY
7VIRGINIA

CS 2100: Data Structures & Algorlthms 1

~ Binary Search Trees ~

Dr. Nada Basit /basit@virginia.edu
Spring 2022

Friendly Reminders

—_— .

- Masks are required at all times during class (University Policy)

- If you forget your mask (or mask is lost/broken), | have a few available
- Just come up to me at the start of class and ask!

- No eating or drinking in the classroom, please

- Our lectures will be recorded (see Collab) - please allow 24-48 hrs to post

- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©

Announcements / Reminders

—_— e ——

- Reminder of Homework Late Policy: [Announcement sent 02/14/2022]

* “Homework 1 (coding)” for each module:
- Official due date: \Wednesday by 11:59pm ET
- Late period (with 10% penalty): 1 week; until the following Wednesday by 11:59pm ET

* “Homework 2 (analysis)” for each module [if applicable]:
- Official due date: Friday by 11:59pm ET
- Late period (with 10% penalty): 3 days; until following Monday by 11:59pm ET

- Manage your time wisely, seek help (TAs or Profs) when needed, use grace period as your
extension if need be.

* Any Questions about: Preoder, Inorder, Postorder

- In Preorder, the root Preorder Traversal:

.. 1. Visit the root

Is visited before (pre) 2. Traverse left subtree

the subtrees traversals 3. Traverse right subtree
- In Inorder, the root Is Inorder Traversal:

visited in-between left 1. Traverse left subtree

_ 2. Visit the root

and right subtree traversal 3. Traverse right subtree
- In Postorder, the root Postorder Traversal:

is visited after (post) 1. Traverse left subtree

2. Traverse right subtree
the subtrees traversals 3 Visit the root

Any Questions about:

Tree Traversal Example [3 methods]

Let’s do an example first...
(Notice: this is a Binary Search Tree!)

- pre-order: (root, left, right)

15, 5, 3,12, 10, 6, 7,
13, 16, 20, 18, 23

- in-order: (left, root, right)

3,5,6,7,10, 12, 13,
15, 16, 18, 20, 23

- post-order: (left, right, root)

3, 7,6, 10, 13,12, 5,
18, 23, 20, 16, 15

Binary Search ‘Trees: Motivation

- It would be nice to find/search for items quickly
- Want a fast look up time
- Want to handle inserts and deletes into list
- |dea: store items in sorted order

- Lists, like ArrayList or LinkedList aren’t ideal
- If not sorted: O(n) lookup (Linear search)
- If can make use of Binary Search: O(log n) lookup
- Must pay O(n log n) to sort beforehand
- If we Insert or remove items, sort may become invalid!

- Is there a way to combine what we have been talking about to get the
best of both worlds?

Yes...!

Binary Search Trees

The utility is in the name... Facilitating fast SEARCH!

A Binary Search Tree (BST) is a kind of Binary Tree

- A Binary tree
- Maximum 2 children per node
- Each node has a data item, e.g. value (or key), and pointers to 1

it’s left and right child nodes:
public class BinaryNode{

int value
3
6 []

BinaryNode left 2
BinaryNode right

}

- In reality, any arrow/edge not shown is a null pointer. El ﬂ L

Binary Search Trees (BST5s)

- Each node has a key value that can be compared

- Binary Search Tree property:
- For a given node, which we will call the root...

- Every node in left subtree has a key whose value is less than the root's key value,
AND

- Every node in right subtree has a key whose value is greater than the root's key valu

- We assume that duplicate values are not allowed

Binary Search Trees: Cool Property

- How could we traverse a BST so that the nodes are
visited in sorted order?

- In-order traversal: left tree, node, right tree

- It’s a very useful property about Binary Search Trees.

- Note: If you perform in-order traversal on a regular
Binary Tree (not a BST) then the nodes are NOT
visited in sorted order!

Example of a Binary Search Tree @

Another example of a Binary Search Tree @

Counter-Example (not a BST)

Left node not

less than
parent
node (20)

BINARY SEARCH TREE

(in fact, not a binary tree!)

Counter-Example (not a BST) ®

5

This 1s a Binary Tree. l/ \

2 10

(N

1 4 3 13

Why is this not a Binary Search Tree?

The Difference Between Binary Trees and BSTs

- Both binary trees and binary search trees have zero, one, or two children per node
- But a binary search tree is sorted
- However, most people, when they say "binary tree", really mean a "binary search tree"

- Note that we assume that we can NOT have duplicate elements in a BST

Let’s Practice —
Can You Identify BSTs?

Are the following trees Binary Search Trees (BSTs) or not?

Question!

- Is this a binary search tree?

Question!

- Is this a binary search tree?

- No! Binary search tree property not preserved

Question!

- Is this a binary search tree?

Question!

- Is this a binary search tree?

- No! Binary search tree property not preserved

Question!

- Are these binary search trees?

ONO
Q0
(a)

(b)

Question!

- Are these binary search trees? Yes! Binary search tree properties are preserved

(0]
(. ()
ONO
QO
(a)

Question!

- Are these binary search trees?
Yes! Binary search tree properties are preserved

(b)

Question!

- Are these binary search trees? Yes!

- However, this tree 1s unbalanced!
- O(n) to find 57!
- essentially linear! ®
- This is an ordered list

- A balanced binary tree

* Guarantees height of child subtrees differ
by no more than 1

- |s better! Produces O(log n) runtimes

Question!

- Is this a binary search tree?

Question!

- Is this a binary search tree?

=)

<0}
00

- No! It is not even a binary tree!

BS'T Operations

Find and Insert

BST: Find

_

- Compare value to be found to key of the root of the tree
- If they are equal, then done

- If not equal, recurse depending on which half of tree the value should be in if it is
In the tree

- If you hit a NULL pointer, then you have "run off" the bottom of the tree, and the
value is not in the tree

BST: Find Example

- Try to find(6)

- Always start at the root of the
tree!

- 6 1S GREATER than 5,
go RIGHT

BST: Find Example

- Try to find(6)

- 6 1s LESS than 10,
go LEFT

BST: Find Example

- Try to find(6)

- Found it!

- The value to be found (6)
matches the key of the
root of the tree (where we
are, which is 6)

BST: Find Java Code

—_— . —————

- Here is how we might write the find () method for a Binary Search Tree where the data
value is an int (very easy to compare)

- It looks fine, but we can do better / make it more general/useful

boolean find(int X, BSTNode curNode){
if(curNode == null) return false;

else if(x < curNode.value)
return find(x, curNode.left);

else if(x > curNode.value)
return find(x, curNode.right);

else return true;

}

BST: Find Java Code

—_— . —————

- What do we do if you are storing Objects in Java? (Complex types; your own Objects...)

- Solution: Use the compareTo() method

private boolean find(T data, BSTNode< T > curNode) {
if(curNode == null) return false;

else if (data.compareTo(curNode.data) < 0)
return find(data, curNode.left);

else if (data.compareTo(curNode.data) > 0)
return find(data, curNode.right);

else
return true;

BST: Find (Final Java Code Solution)

- Programmers using your tree doesn’t know what curNode is...

- Helper method hides this (form of abstraction).

public boolean find(T data){
return find(data, rootNode);

}

private boolean find(T data, BSTNode< T > curNode) {
if(curNode == null) return false;

else if (data.compareTo(curNode.data) < @)
return find(data, curNode.left);

else if (data.compareTo(curNode.data) > 9)
eturn find(data, curNode.right);

return true;

WE INTERRUPT THE
REGULARLY SCHEDULED
PROGRAM TO BRING YOU

THIS IMPORTANT MESSAGE

comparelo() and the
Comparable Interface

Needed Detour!!

This Photo by Unknown Author is licensed under CC BY-SA-NC

http://therunman.blogspot.com/2007/11/detour-heather-doiron-past-present.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

Comparable Interface

—_— e ——

- Collections Framework provides a Comparable Interface
- Defines the natural ordering Of objects of a class

“This interface imposes a total ordering on the objects of each class
that implements it. This ordering is referred to as the class’s
natural ordering, and the class’s compareTo method is referred to
as its natural comparison method.” — Comparable API

Using Generics!

Implementing Comparab

- The Comparable In e requires only one method:
- .compareTo(T o) —compare this object to “0”

- We must implement the interface and define T:

public class PhoneBookEntry implements Comparable<PhoneBookEntry

Fill in actual type!

@Override

public int compareTo(PhoneBookEntry o) {...}
)

- Comparable interface is generic, where you must include the type of the class
- The type inside the <> defines T

Implementing Comparable ~ fulfilling the contract

- Implement .compareTo(T o) to fulfill the contract
public int compareTo(T o) { .. }

- Format: stringl.compareTo(string2) //returns an int

- Programming convention: Return value as follows:
- zero If the same ~ sameness should be same as .equals()

- negative value If first item strictly less than second
- positive value If first item strictly greater than second

- We don’t care about the actual value

In Order To Store YOUR Items Into A BST...

- If you ever want to put your own objects in a Binary Search Tree (BST), you
must:

1. Make your class implement the Comparable interface
2. Implement (write) the compareTo() method in your class

- How to write compareTo()?
- Think about state-variables that determine natural order
- Compare them and return proper-value
- What makes one of your objects less-than or greater-than the other?

Example: To Be Able to Add Students to a BST...

- Student class “implements” the Comparable<Student> {

Comparable interface:
Comparable<Student>

) _ : (name, score) {
Must fulfil contract: override name = name;

the compareTo() method stub .score = score;

- Stl.compareTo(St2);

- Body: define the natural _ — ()+{Scope;

ordering Of the class }

- Now that we can say one » @0verride
student Is > or < another, we
can create a BST of type
Student (otherwise we cant!)

regularly sche

programming

BST: Insert (very similar to Find!)

- Find an element in the tree
- Compare with root, if less traverse left, else traverse right; repeat
- Stops when found or at a leaf
- Sounds like binary search!
- Time complexity: O(log n), worst case height of the tree

- Insert a new element into the tree
- Easy! Do a find operation. At the leaf node, add it!
- Remember: add it to the correct side (left or right)

BST: Insert (Final Java Code Solution)

- ldea: Move down the tree like in the find() method to discover location
- Make and put the new node when you encounter a null subtree

public void insert(T data) {
this.root = insert(data, root);

}

private BSTNode< T > insert(T data, BSTNode< T > curNode) {
if(curNode == null) return new BSTNode< T >(data);

else if (data.compareTo(curNode.data) < ©)
curNode.left = insert(data, curNode.left);

else if (data.compareTo(curNode.data) > ©)
curNode.right = insert(data, curNode.right);

else

return curNode;

Find and Insert in BST

- Find: look for where it should be

- If not there, that’s where you insert

26 < 30 (first compare—qgo left)

26 > 20 (second
compare—qgo right)

New Node =
26 > 25 (third

compare—go right)

26 < 27 (fourth
/ compare—qgo left)

Left child is null—add
new node here

Find 23 in BST

- Always start at the root of the tree!
- 231sL.ESS than 30,s0 g0 LEFT

26 < 30 (first compare—qgo left)

26 > 20 (second
compare—qgo right)

New Node =
26 > 25 (third

compare—go right)

26 < 27 (fourth
/ compare—qgo left)

Left child is null—add
new node here

Find 23 in BST

- Always start at the root of the tree!
- 231S GREATER than 20,s0go RIGHT

26 < 30 (first compare—qgo left)

26 > 20 (second
compare—qgo right

New Node =
26 > 25 (third

compare—go right)

26 < 27 (fourth
/ compare—qgo left)

Left child is null—add
new node here

Find 23 in BST

- Always start at the root of the tree!
- 23 1S L.ESS than 25,s0 90 LEFT

26 < 30 (first compare—qgo left)

26 > 20 (second
compare—qgo right)

New Node =
26 > 25 (third

compare—go right)

26 < 27 (fourth
/ compare—qgo left)

Left child is null—add
new node here

Find 23 in BST

- Always start at the root of the tree!
- We found it! If not, 23 would be in this sub-tree

26 < 30 (first compare—qgo left)

26 > 20 (second
compare—qgo right)

New Node =
26 > 25 (third

compare—go right)

26 < 27 (fourth
/ compare—qgo left)

Left child is null—add
new node here

Binary Search Tree vs Array

- Can find an element much quicker using a BST
Binary search tree

@ s
g Do

/ /

e@@ @Q@ o0 @@@

Sorted array steps: 10

oQQ@@®®@®@¢@®@@ penjoscom

BST: Insert

- Where do we Insert a new element?

- Run find () method to determine where the element should have been
- Add the new node at that position

BST: Insert Example

- Insert 33 into the following binary search tree

BST: Insert Example

- Insert 33 into the following binary search tree

BST: Insert Example

- Insert 33 into the following binary search tree

33 1s less than 40

BST: Insert Example

- Insert 33 into the following binary search tree

If 33 existed, it would
be in the LEFT subtree of 40.

But 40 does not have a left
child: 33 should go here!

BST: Insert Example

- Insert 33 into the following binary search tree

(20) 40
() () (53)
@,@ Add 33 as left child of 40

