
CS 2100: Data Structures & Algorithms 1

Trees
~ Binary Search Trees ~

Dr. Nada Basit // bas i t@virg in ia .edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Announcements / Reminders

• Reminder of Homework Late Policy: [Announcement sent 02/14/2022]

 “Homework 1 (coding)” for each module:

 Official due date: Wednesday by 11:59pm ET

 Late period (with 10% penalty): 1 week; until the following Wednesday by 11:59pm ET

 “Homework 2 (analysis)” for each module [if applicable]:

 Official due date: Friday by 11:59pm ET

 Late period (with 10% penalty): 3 days; until following Monday by 11:59pm ET

 Manage your time wisely, seek help (TAs or Profs) when needed, use grace period as your
extension if need be.

3

Any Questions about: Preoder, Inorder, Postorder

• In Preorder, the root

is visited before (pre)

the subtrees traversals

• In Inorder, the root is

visited in-between left

and right subtree traversal

• In Postorder, the root

is visited after (post)

the subtrees traversals

Preorder Traversal:

1. Visit the root

2. Traverse left subtree

3. Traverse right subtree

Inorder Traversal:

1. Traverse left subtree

2. Visit the root

3. Traverse right subtree

Postorder Traversal:

1. Traverse left subtree

2. Traverse right subtree

3. Visit the root 4

Any Questions about:
[3 methods]

Let’s do an example first…

(Notice: this is a Binary Search Tree!) • pre-order: (root, left, right)

15, 5, 3, 12, 10, 6, 7,

13, 16, 20, 18, 23

• in-order: (left, root, right)

3, 5, 6, 7, 10, 12, 13,

15, 16, 18, 20, 23

• post-order: (left, right, root)

3, 7, 6, 10, 13, 12, 5,

18, 23, 20, 16, 15
5

Binary Search Trees: Motivation

• It would be nice to find/search for items quickly

 Want a fast look up time

 Want to handle inserts and deletes into list

 Idea: store items in sorted order

• Lists, like ArrayList or LinkedList aren’t ideal

 If not sorted: O(n) lookup (Linear search)

 If can make use of Binary Search: O(log n) lookup

 Must pay O(n log n) to sort beforehand

 If we insert or remove items, sort may become invalid!

• Is there a way to combine what we have been talking about to get the

best of both worlds?
6

Yes…!

Binary Search Trees
The utility is in the name… Facilitating fast SEARCH!

7

A Binary Search Tree (BST) is a kind of Binary Tree

• A Binary tree

 Maximum 2 children per node

 Each node has a data item, e.g. value (or key), and pointers to
it’s left and right child nodes:

 In reality, any arrow/edge not shown is a null pointer.

8

Binary Search Trees (BSTs)

• Each node has a key value that can be compared

• Binary Search Tree property:

 For a given node, which we will call the root...

 Every node in left subtree has a key whose value is less than the root's key value,
AND

 Every node in right subtree has a key whose value is greater than the root's key value

• We assume that duplicate values are not allowed

9

Binary Search Trees: Cool Property

• How could we traverse a BST so that the nodes are

visited in sorted order?

 In-order traversal: left tree, node, right tree

• It’s a very useful property about Binary Search Trees.

• Note: If you perform in-order traversal on a regular

Binary Tree (not a BST) then the nodes are NOT

visited in sorted order!

10

Example of a Binary Search Tree

11

Another example of a Binary Search Tree

12

Counter-Example (not a BST)

4

181062

115

8

20

21NOT A

BINARY SEARCH TREE

7

15

Three

child

nodes

Left node not

less than

parent

node (20)

13

Counter-Example (not a BST)

14

Why is this not a Binary Search Tree?

This is a Binary Tree.

The Difference Between Binary Trees and BSTs

• Both binary trees and binary search trees have zero, one, or two children per node

• But a binary search tree is sorted

• However, most people, when they say "binary tree", really mean a "binary search tree"

• Note that we assume that we can NOT have duplicate elements in a BST

15

Let’s Practice –
Can You Identify BSTs?
Are the following trees Binary Search Trees (BSTs) or not?

16

Question!

• Is this a binary search tree?

17

17

Question!

• Is this a binary search tree?

• No! Binary search tree property not preserved

18

18

Question!

• Is this a binary search tree?

19

Question!

• Is this a binary search tree?

• No! Binary search tree property not preserved
20

• Are these binary search trees?

(a) (b)

Question!

21

• Are these binary search trees? Yes! Binary search tree properties are preserved

(a)

Question!

22

• Are these binary search trees?
Yes! Binary search tree properties are preserved

(a) (b)

Question!

23

• Are these binary search trees? Yes!

• However, this tree is unbalanced!

 O(n) to find 57!

 essentially linear!

 This is an ordered list

• A balanced binary tree

 Guarantees height of child subtrees differ
by no more than 1

 Is better! Produces O(log n) runtimes

Question!

24

Question!

• Is this a binary search tree?

25

25

Question!

• Is this a binary search tree?

• No! It is not even a binary tree!
26

BST Operations
Find and Insert

27

BST: Find

• Compare value to be found to key of the root of the tree

 If they are equal, then done

 If not equal, recurse depending on which half of tree the value should be in if it is
in the tree

 If you hit a NULL pointer, then you have "run off" the bottom of the tree, and the
value is not in the tree

28

BST: Find Example

• Try to find(6)

• Always start at the root of the

tree!

• 6 is GREATER than 5,

go RIGHT

29

BST: Find Example

• Try to find(6)

• 6 is LESS than 10,

go LEFT

30

BST: Find Example

• Try to find(6)

• Found it!

• The value to be found (6)

matches the key of the

root of the tree (where we

are, which is 6)

31

BST: Find Java Code

• Here is how we might write the find() method for a Binary Search Tree where the data

value is an int (very easy to compare)

• It looks fine, but we can do better / make it more general/useful

32

BST: Find Java Code

• What do we do if you are storing Objects in Java? (Complex types; your own Objects…)

• Solution: Use the compareTo() method

33

BST: Find (Final Java Code Solution)

• Programmers using your tree doesn’t know what curNode is…

• Helper method hides this (form of abstraction).

34

compareTo() and the
Comparable Interface
Needed Detour!!

35
This Photo by Unknown Author is licensed under CC BY-SA-NC

http://therunman.blogspot.com/2007/11/detour-heather-doiron-past-present.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

Comparable Interface

• Collections Framework provides a Comparable interface

 Defines the of objects of a class

36

Implementing Comparable
• The Comparable interface requires only one method:

 .compareTo(T o) – compare this object to “o”

• We must implement the interface and define T:

public class PhoneBookEntry implements Comparable<PhoneBookEntry> {

...

@Override

public int compareTo(PhoneBookEntry o) {...}

}
• Comparable interface is generic, where you must include the type of the class

• The type inside the <> defines T

Using Generics!

Fill in actual type!

37

• Implement .compareTo(T o) to fulfill the contract

public int compareTo(T o) { … }

 Format: string1.compareTo(string2) //returns an int

 Programming convention: Return value as follows:

zero if the same

negative value if first item strictly less than second

positive value if first item strictly greater than second

 We don’t care about the actual value

Implementing Comparable ~ fulfilling the contract

38

In Order To Store YOUR Items Into A BST…

• If you ever want to put your own objects in a Binary Search Tree (BST), you

must:

1. Make your class

2. Implement (write) the in your class

• How to write compareTo()?

 Think about state-variables that determine natural order

 Compare them and return proper-value

 What makes one of your objects less-than or greater-than the other?

39

Example: To Be Able to Add Students to a BST…
• Student class “ ” the

Comparable interface:
Comparable<Student>

• Must fulfil contract: override

the compareTo() method stub

• St1.compareTo(St2);

• Body: define the

of the class

• Now that we can say one

student is > or < another, we

can create a BST of type

Student (otherwise we can’t!)

40

40

41

BST: Insert (very similar to Find!)

• Find an element in the tree

 Compare with root, if less traverse left, else traverse right; repeat

 Stops when found or at a leaf

 Sounds like binary search!

 Time complexity: O(log n), worst case height of the tree

• Insert a new element into the tree

 Easy! Do a find operation. At the leaf node, add it!

 Remember: add it to the correct side (left or right)

42

BST: Insert (Final Java Code Solution)
• Idea: Move down the tree like in the find() method to discover location

 Make and put the new node when you encounter a null subtree

43

Find and Insert in BST

• Find: look for where it should be

• If not there, that’s where you insert

44

Find 23 in BST

• Always start at the root of the tree!

• 23 is LESS than 30, so go LEFT

45

Find 23 in BST

• Always start at the root of the tree!

• 23 is GREATER than 20, so go RIGHT

46

Find 23 in BST

• Always start at the root of the tree!

• 23 is LESS than 25, so go LEFT

47

Find 23 in BST

• Always start at the root of the tree!

• We found it! If not, 23 would be in this sub-tree

Found

it!

48

Binary Search Tree vs Array

Source:

penjee.com

• Can find an element much quicker using a BST

49

BST: Insert

• Where do we insert a new element?

 Run find() method to determine where the element should have been

 Add the new node at that position

50

BST: Insert Example

• Insert 33 into the following binary search tree

51

BST: Insert Example

• Insert 33 into the following binary search tree

33 is greater than 30

52

BST: Insert Example

• Insert 33 into the following binary search tree

33 is less than 40

53

BST: Insert Example

• Insert 33 into the following binary search tree

If 33 existed, it would

be in the LEFT subtree of 40.

But 40 does not have a left

child: 33 should go here!

54

BST: Insert Example

• Insert 33 into the following binary search tree

Add 33 as left child of 40

55

