

CS 2100: Data Structures & Algorithms 1

Trees - Introduction to Trees and Tree Traversals-

> Dr. Nada Basit // basit@virginia.edu Spring 2022

Friendly Reminders

- Masks are **required** at all times during class (University Policy)
- If you forget your mask (or mask is lost/broken), I have a few available
 - Just come up to me at the start of class and ask!
- No eating or drinking in the classroom, please
- Our lectures will be **recorded** (see Collab) please allow 24-48 hrs to post
- If you feel **unwell**, or think you are, please stay home
 - We will work with you!
 - At home: eye mask instead! Get some rest ③

Announcements / Reminders

• **Reminder of Homework Late Policy:** [Announcement sent 02/14/2022]

- "Homework 1 (coding)" for each module:
 - Official due date: Wednesday by 11:59pm ET
 - <u>Late period</u> (with 10% penalty): 1 week; until the following Wednesday by 11:59pm ET
- "Homework 2 (analysis)" for each module [*if applicable*]:
 - Official due date: Friday by 11:59pm ET
 - <u>Late period</u> (with 10% penalty): 3 days; until following Monday by 11:59pm ET
- Manage your time wisely, seek help (TAs or Profs) when needed, *use grace period as your extension* if need be.

Data Structures

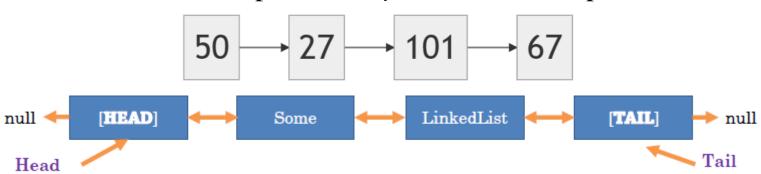
- If we have a good list implementation, do we need **any other** data structures?
- For computing: *no*
 - We can compute everything with just lists (actually even less). The underlying machine memory can be thought of as a list
- For thinking: yes
 - Lists are a very limited way of thinking about problems

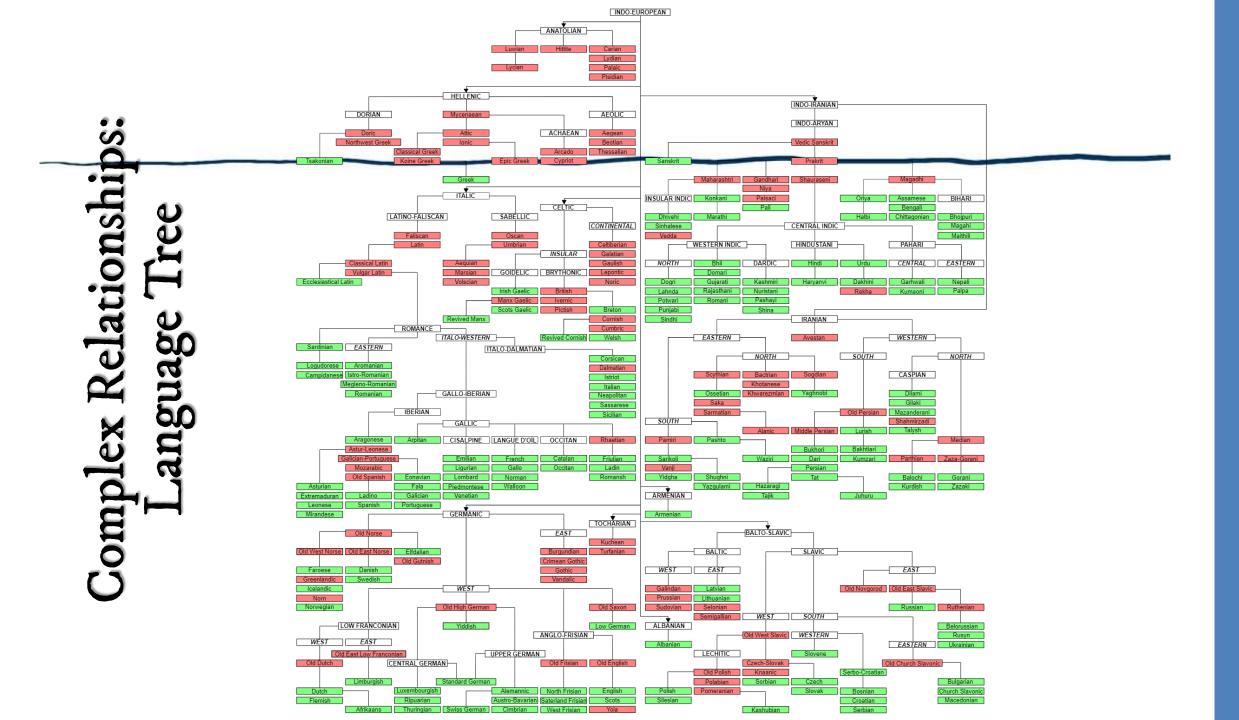
List Recursive Data Structure

- Lists keep things in order
 - Arrays
 - Keep things in a fixed block of memory which is good for some operations and not as good for other operations
 - Example: Add at the end of a list vs. add at beginning or middle of list
 - Linked Lists
 - Use reference pointers between list *nodes* (elements) to maintain order

List Limitations

- In a list, every element has direct relationships *with only two others*: the predecessor and the successor
- Access time: Θ(n)
- Goal: $\Theta(\log n)$





Why Does This Matter Now?

- This illustrates (again) important design ideas
- The tree itself is what we're interested in
 - There are tree-level operations on it ("ADT level" operations)
 - A tree is an abstract data type!
- The implementation is a recursive data structure
 - There are recursive methods inside the **node-level** classes that are *closely related* (same name!) to the **tree-level** operation
- <u>Principles</u>?
 - abstraction (hiding details)
 - delegation (helper classes, methods)

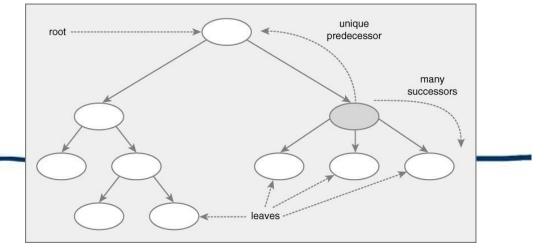
Data Types vs. Data Structures

- Data types can be...
 - <u>Simple</u> or <u>Composite</u>

- **Data structures** are <u>composite</u> data types...
 - **Definition**: a collection of elements that are some combination of primitive and other composite data types

Trees

- Trees are a
 - composite, hierarchical and graph-like data structure in which each element has
 - Only one **predecessor**, and
 - Zero, one, or more successors
 - In Computer Science, trees grow <u>down</u>, not up!
 - Predecessors are **up**
 - Successors are **down**
 - A <u>tree</u> is a special case of a <u>list</u>



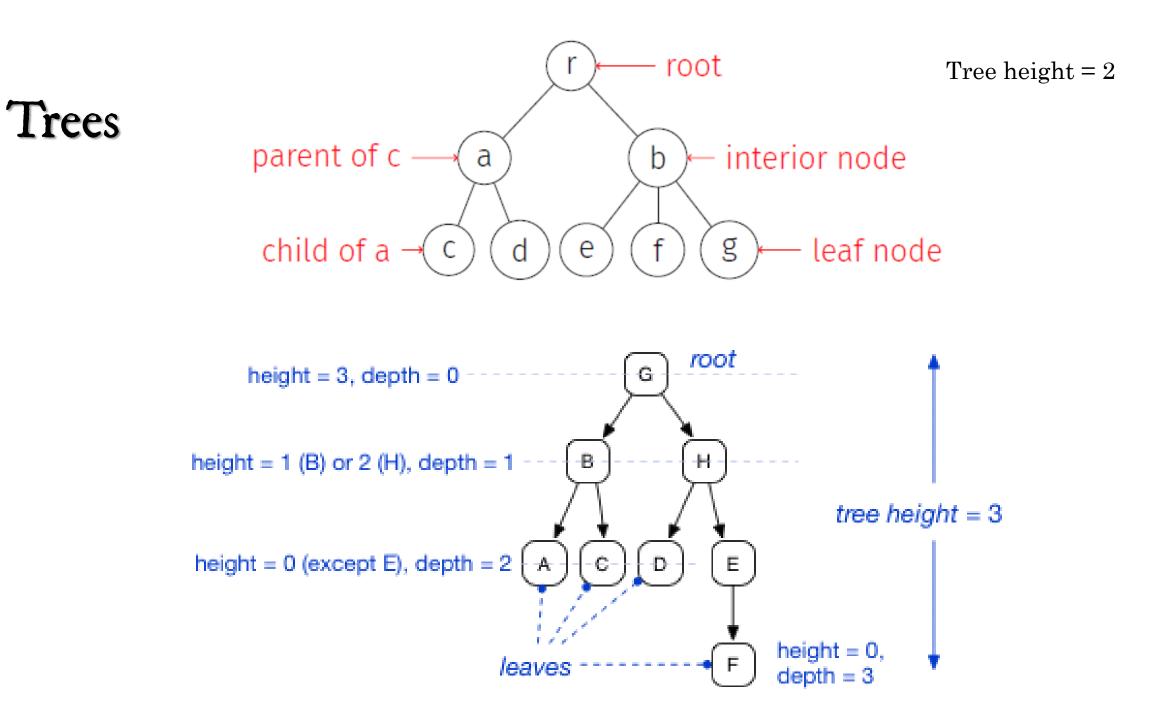
Tree Terminology

- Trees are composed of:
 - Nodes
 - Elements in the data structure (hold data)
 - Only one parent (*unique predecessor*)
 - Zero, one, or more children (*successors*)
 - **ROOT** node: **top** (or **start**) node; with no parent; there is only <u>one</u> root
 - **LEAF** nodes: nodes without children (*terminal*)
 - **INTERNAL** node: nodes with children (*non-terminal*)
 - **SIBLING** nodes: nodes with the same parent
 - Measure of **DEGREE**: how many children
 - Edges
 - Link parent node with children node (if applicable)

Tree Terminology ~ Relating to Height, Depth, Path

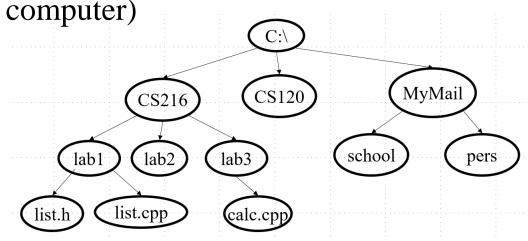
Height and Depth

- **HEIGHT** of a **node**: is the *longest* **path** (*# edges*) from that node to a **leaf**
 - Thus, all **leaves** have a height of **zero** (0)
- **HEIGHT** of a **tree** is the *maximum* **depth** (*# edges*) of a node in that tree
 - Height of a tree = height of the **root**
- **DEPTH** of a node: length of the **path** (*# edges*) from the **root** to that node
- **PATH**: sequence of nodes $n_1, n_2, ..., n_k$ such that n_i is parent of n_{i+1} for $1 \le i \le k$
- **LENGTH**: number of **edges** in the **path**
- **INTERNAL PATH LENGTH**: sum of the **depths** of all the nodes



Trees are Important

- Trees are important for cognition and computation. *What are some examples of trees and tree usages?*
 - Parse trees: language processing, human or computer (compilers)
 - Family (genealogy) trees (can be complicated with some complex family relationships)
 - The Linnaean taxonomy (kingdom, phylum, ..., species)
 - File systems (directory structures on a computer)
 - ... others?



Tree Definitions and Terms

• Binary tree:

- A tree in which each node has at most **two** (2) children
- Children denoted as left child or right child

General tree definition:

- A set of nodes T (*possibly empty*) with a **distinguished node**, the **root**
 - All other nodes form a set of disjoint subtrees T_i, in which
 - each is a tree in its own right
 - each is connected to the root with an edge
 - Note the recursive definition
 - Each node is the root of a *subtree*

• A tree with no nodes \rightarrow null or empty tree

Trees: Recursive Data Structure

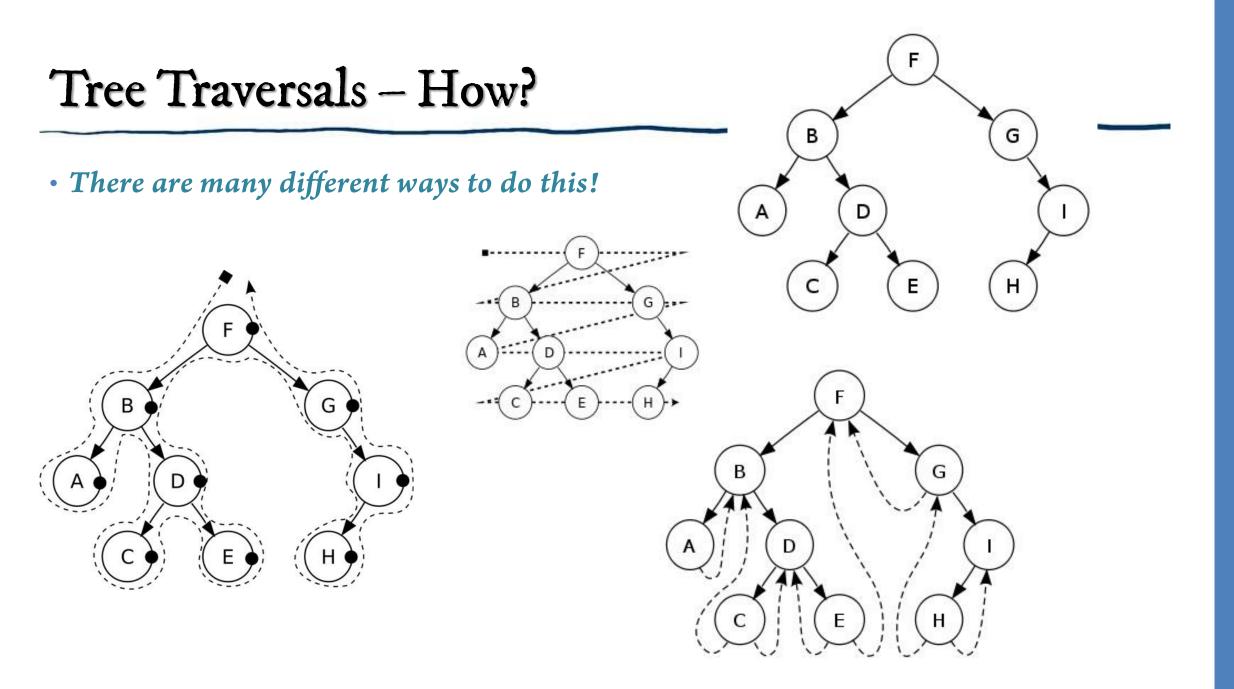
• **Recursive data structure:** a data structure that contains references (or pointers) to an instances of that same type

```
public class TreeNode<E> {
    private E data;
    private TreeNode<E> left;
    private TreeNode<E> right;
    ...
}
```

- Recursion is a natural way to express many data structures
- For these, it's natural to have recursive algorithms
- Tree operations may come in two flavors:
 - **NODE-SPECIFIC (NODE CLASS)** (e.g. hasParent() or hasChildren())
 - **TREE-WIDE (TREE CLASS)** (e.g. size() or height()) requires tree traversal

Some Motivation...

- Lists are great for keeping objects in order. They're less useful for searching
- **Searching** an unsorted list \rightarrow O(n) (e.g. *linear search*)
- **Searching** a sorted list \rightarrow O(lg n) (e.g. *binary search*)
 - However, takes O(n lg n) to sort...
 - And must be re-sorted as the list changes
- We know how to traverse a list the order is obvious... but for other structures?



Traversal Applications

When would we want to traverse a tree? What are some applications?

- Processing tree elements
- Make a clone (deep copy) of a tree
- Determine tree height
- Determine tree size (number of nodes)
- Searching

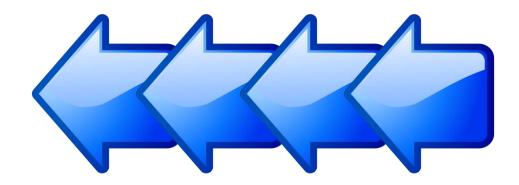
- A **tree traversal** is a specific order in which to trace the nodes of a tree
 - Visit every node <u>once</u>
- There are three common tree traversals for binary trees: (depth-first)

 pre-order
 post-order
 - This order is applied *recursively*

- In each technique, the **left** subtree is traversed recursively, the **right** subtree is traversed recursively, and the **root** is visited
- What distinguishes the techniques from one another is *the order of those 3 tasks*
- Visiting a node entails doing some processing at that node (often it is just **printing** node label or its data)

• Note "in", "pre", and "post" refer to when we visit the <u>root</u> (of that subtree)

In each technique, the left subtree is <u>always</u> traversed (recursively)
 BEFORE the **right** subtree is traversed!



★ Preoder, Inorder, Postorder

- In <u>Preorder</u>, the root
 is visited **before** (pre)
 the subtrees traversals
- In <u>Inorder</u>, the root is visited **in-between** left and right subtree traversal
- In <u>Postorder</u>, the root is visited **after** (post)
 - the subtrees traversals

Preorder Traversal:

- 1. Visit the **root**
- 2. Traverse left subtree
- 3. Traverse **right** subtree

Inorder Traversal:

- 1. Traverse left subtree
- 2. Visit the **root**
- 3. Traverse **right** subtree

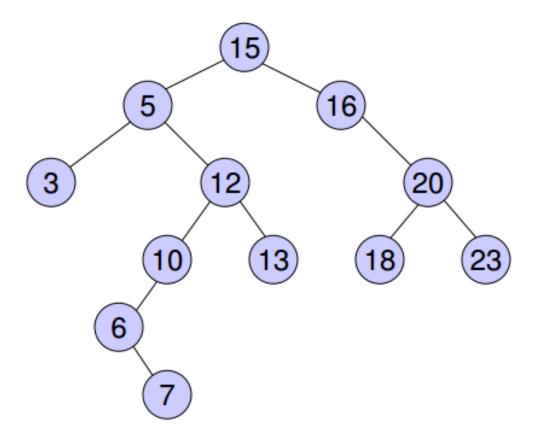
Postorder Traversal:

- 1. Traverse **left** subtree
- 2. Traverse **right** subtree
- 3. Visit the **root**

Tree Traversal Example [3 methods]

Let's do an example first...

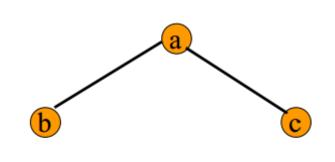
(Notice: this is a Binary Search Tree!)



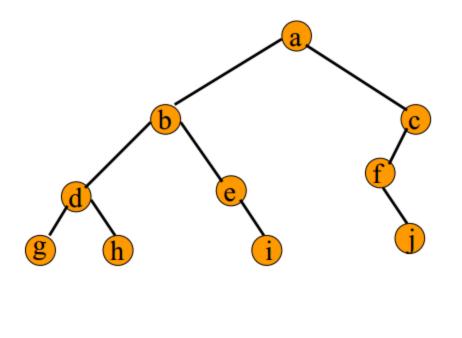
- **pre-order**: (root, left, right)
 - 15, 5, 3, 12, 10, 6, 7,
 - 13, 16, 20, 18, 23
- **<u>in-order</u>**: (left, root, right)
 - 3, 5, 6, 7, 10, 12, 13,
 - 15, 16, 18, 20, 23
- <u>post-order</u>: (left, right, root) 3, 7, 6, 10, 13, 12, 5, 18, 23, 20, 16, 15

Pre-order Traversal

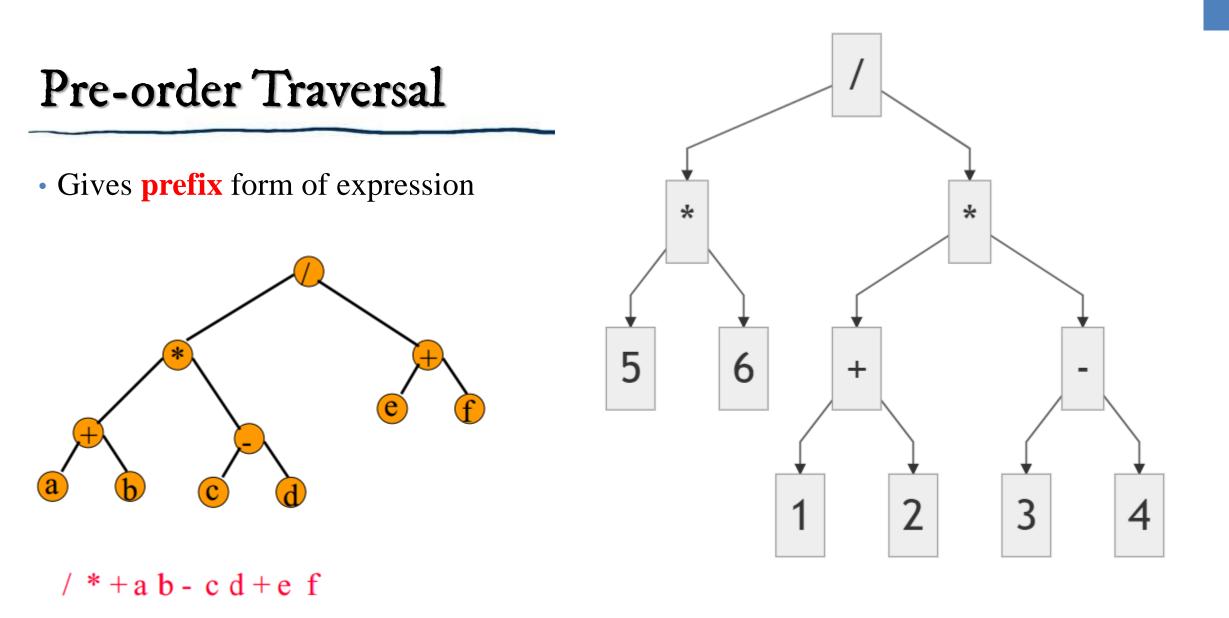
- Prints in order: **root**, left, right
- It is also the simple
 - depth-first search



a b c



abd gheicfj



Pre-order: / * 5 6 * + 1 2 - 3 4

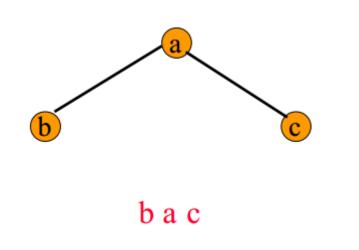
Pre-order Traversal – Java Code

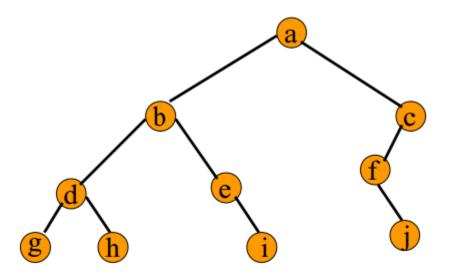
• Pre-order: node first, then children (this is *pseudocode*):

```
public class Tree{
  private Node root;
  public void printTree(){
    printTree(root);
  }
  private void printTree(Node curNode) {
      if(curNode == null) return;
      System.out.println(curNode.value + " ");
      printTree(curNode.left);
      printTree(curNode.right);
```

In-order Traversal

- The in-order traversal sorts the values from smallest to largest for a Binary Search Tree (BST) (See "3 methods" slide)
- Prints in order: left, **root**, right

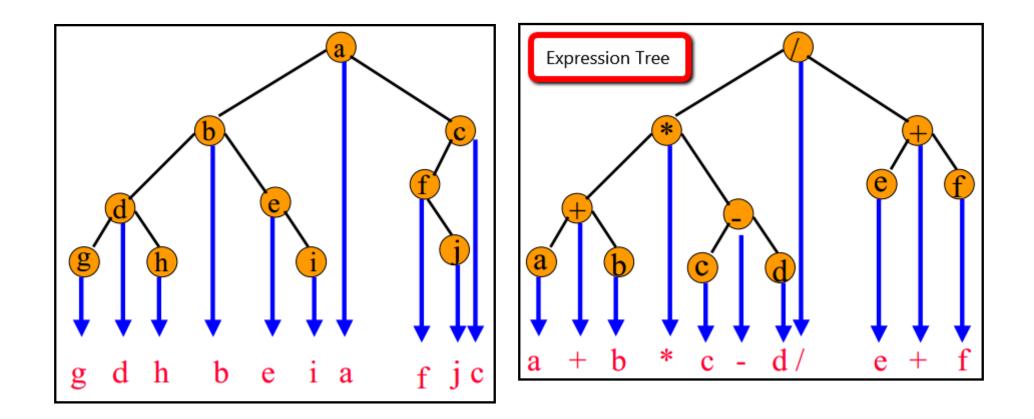




gdhbei afj c

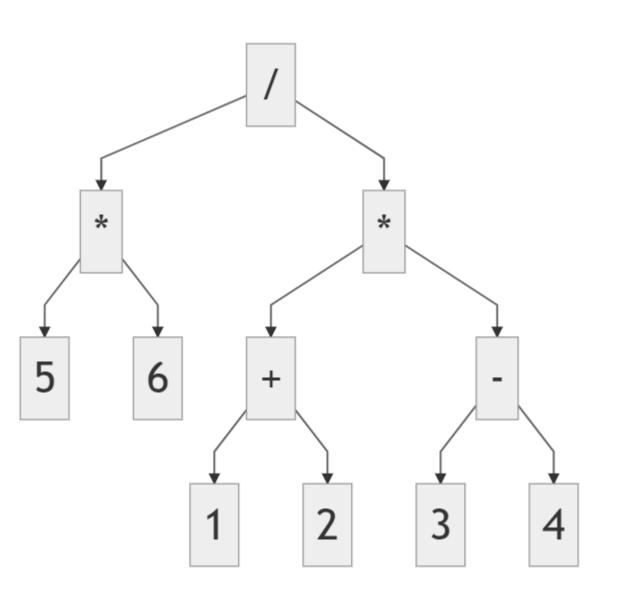
In-order Traversal (Projection)

• Gives **infix** form of expression (sans parenthesis)



In-order Traversal

• Another example:



In-order: (5+6) / ((1+2)*(3-4))

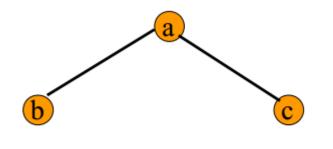
In-order Traversal – Java Code

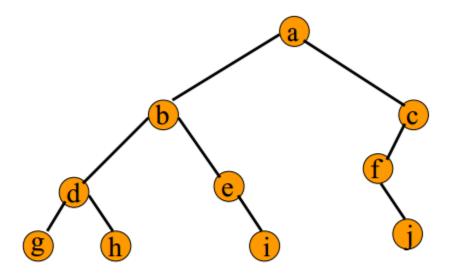
• In-order: left node first, then self, then right node:

private void printTree(Node curNode) {
 if(curNode == null) return;
 printTree(curNode.left);
 System.out.println(curNode.value + " ");
 printTree(curNode.right);

Post-order Traversal

• Prints in order: left, right, **root**



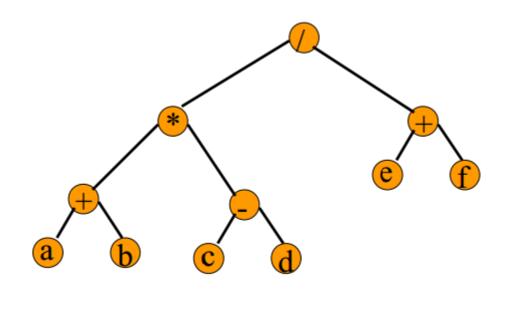


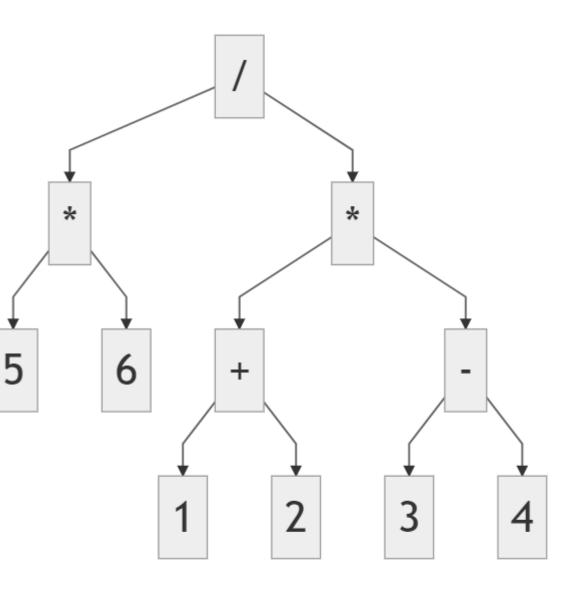
b c a

ghdi ebjfca

Post-order Traversal

• Gives **postfix** form of expression





a b + c d - * e f + /

Post-order: 5 6 * 1 2 + 3 4 - * /

Post-order Traversal – Java Code

- Post-order: children first, then node
 - This method *counts the number of nodes*

```
private void numNodes(Node root) {
    if(root == null) return 0;
    int sum = numNodes(root.left) + numNodes(root.right);
    return sum+1;
}
```

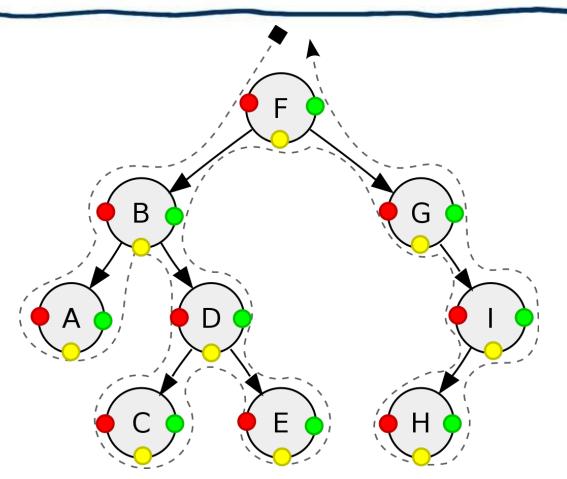
Post-order Traversal – Java Code

- **toString()** method for a **Binary Tree** in the **BinaryTreeNode** Class written like a **post-order traversal**. Note here we check left and right before making recursive calls.
 - Assuming reference points to the left and right subtree are called "left" and "right"

```
@Override
public String toString() {
    String retVal = "";
    if (left != null)
        retVal += left.toString(); // recursive call on left
    if (right != null)
        retVal += right.toString(); // recursive call on right
    retVal += "("+data+")"; // add this node's data
    return retVal;
}
```

Tree Traversal "Trick"?

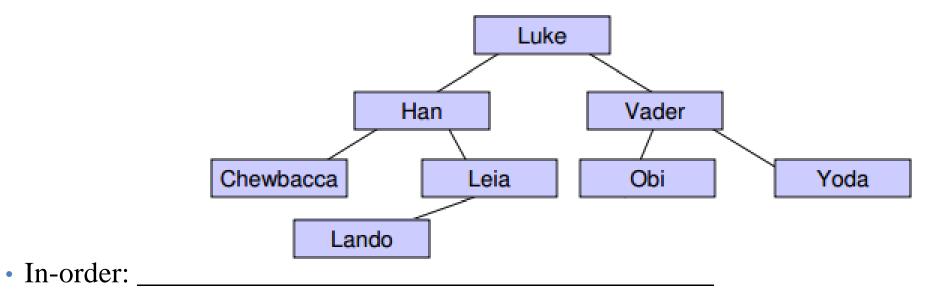
- Here's a trick to help you remember the traversal methods:
- *pre-order* (*red*): F, B, A, D, C, E, G, I, H
- *in-order* (*yellow*): A, B, C, D, E, F, G, H, I
- *post-order* (*green*): A, C, E, D, B, H, I, G, F



Picture credit: Pluke, Miles, and Jochen Burghardt (overlay)

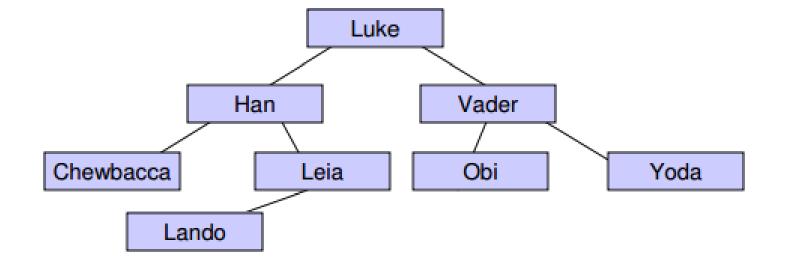
Tree Traversal Practice

- Given a tree, you are expected to know how to do the pre-, in-, and post-order traversals
- <u>Example</u>: Write the 3 traversals of the given tree



- Pre-order: _______
- Post-order:

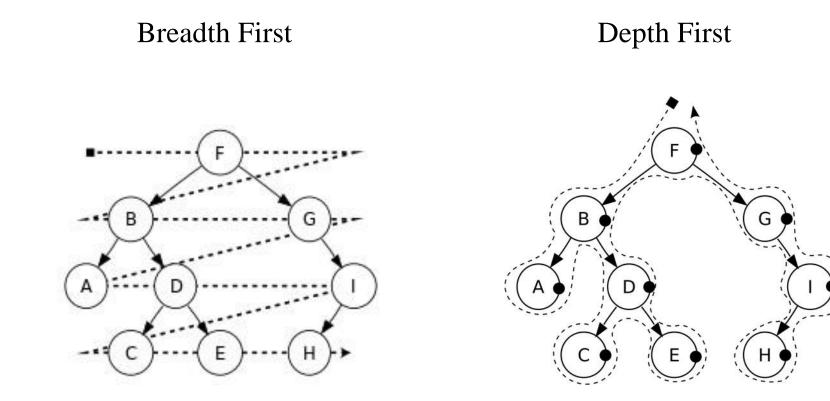
Practice (Answers)



<u>In-order</u>: Chewbacca, Han, Lando, Leia, Luke, Obi, Vader, Yoda <u>Pre-order</u>: Luke, Han, Chewbacca, Leia, Lando, Vader, Obi, Yoda <u>Post-order</u>: Chewbacca, Lando, Leia, Han, Obi, Yoda, Vader, Luke

Interesting / Extra...!

Depth First vs. Breadth First



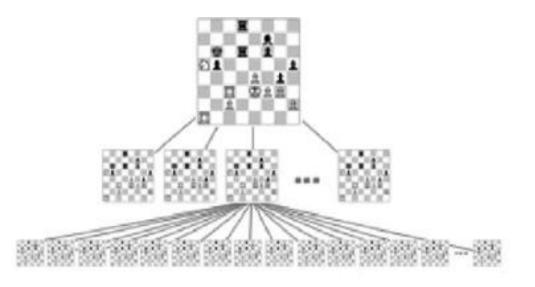
Iterative Depth-First Search

- Depth-first search (DFS) goes deeply into the tree and then backtracks when it reaches the leaves.
- DFS pseudocode algorithm uses a *Stack*! stack.push(root) // starting with empty stack, push root while (stack is **not** empty): n = stack.pop() process(n) // "visit" or process this node // right child pushed first so that left is processed first if (right node not null): stack.push(right child) if (left node not null): stack.push(left child)

This algorithm accomplishes a **pre-order** traversal

When would you use Depth-First?

- Often used when simulating games
- Populate a tree with all possible chess moves
- Perform a depth-first search to find a leaf node that ends in a **win**
- Follow the moves that lead to that leaf!



Iterative Breadth-First Search

- Breadth-first search (BFS) visits all notes on the same level before going to the next.
- BFS pseudocode algorithm uses a *Queue*!

queue.add(root) // starting with empty queue, add root

while (queue is not empty):

```
n = queue.remove()
```

process(n) // "visit" or process this node

// enqueue the left child before the right child

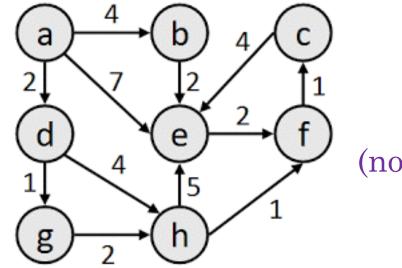
- // so that left is processed first
- if (left node not null):

queue.add(left child)

if (right node not null):
 queue.add(right child)

When would you use Breadth-First?

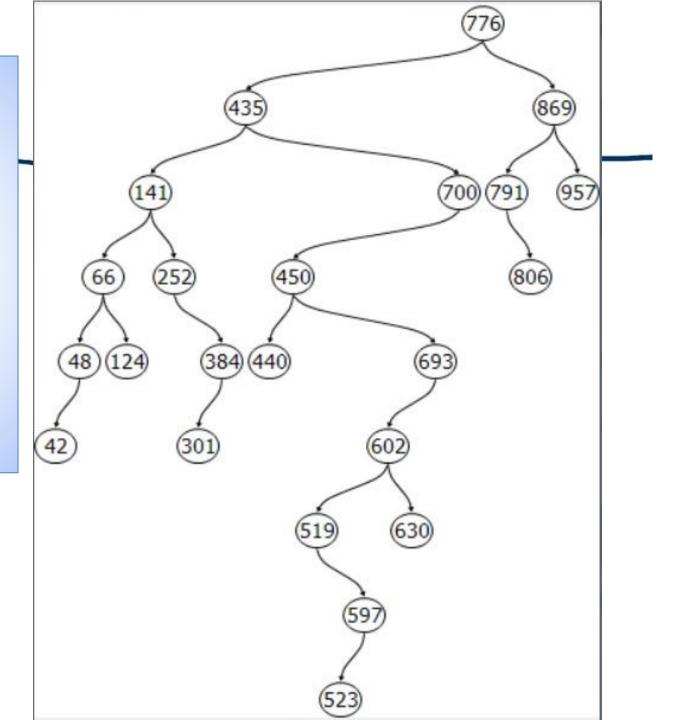
- Breadth-First Search has an interesting property in that it can be used to find the **shortest path** between two nodes
- See Dijkstra's algorithm



(not a tree)

Practice makes perfect! *Unofficial Exercise*:

On this (*wavey*!) binary tree, show: **in-order**, **pre-order**, and **post-order** traversal



45