
CS 2100: Data Structures & Algorithms 1

Trees
~Introduction to Trees and Tree Traversals~

Dr. Nada Basit // bas i t@virg in ia .edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Announcements / Reminders

• Reminder of Homework Late Policy: [Announcement sent 02/14/2022]

 “Homework 1 (coding)” for each module:

 Official due date: Wednesday by 11:59pm ET

 Late period (with 10% penalty): 1 week; until the following Wednesday by 11:59pm ET

 “Homework 2 (analysis)” for each module [if applicable]:

 Official due date: Friday by 11:59pm ET

 Late period (with 10% penalty): 3 days; until following Monday by 11:59pm ET

 Manage your time wisely, seek help (TAs or Profs) when needed, use grace period as your
extension if need be.

3

Data Structures

• If we have a good list implementation, do we need any other data structures?

• For computing: no

 We can compute everything with just lists (actually even less).
The underlying machine memory can be thought of as a list

• For thinking: yes

 Lists are a very limited way of thinking about problems

4

List Recursive Data Structure

• Lists keep things in order

 Arrays

 Keep things in a fixed block of memory – which is good for some operations and not as
good for other operations

 Example: Add at the end of a list vs. add at beginning or middle of list

 Linked Lists

 Use reference pointers between list nodes (elements) to maintain order

• List Limitations

 In a list, every element has direct relationships with only two others: the predecessor and
the successor

 Access time: Θ(n)

 Goal: Θ(log n)

5

C
om

pl
ex

 R
el

at
io

ns
hi

ps
:

L
an

gu
ag

e
T

re
e

6

Why Does This Matter Now?

• This illustrates (again) important design ideas

• The tree itself is what we’re interested in

 There are tree-level operations on it (“ADT level” operations)

 A tree is an abstract data type!

• The implementation is a recursive data structure

 There are recursive methods inside the node-level classes that are closely related
(same name!) to the tree-level operation

• Principles?

 abstraction (hiding details)

 delegation (helper classes, methods)

7

Data Types vs. Data Structures

• Data types can be…

 Simple or Composite

• Data structures are composite data types…

 Definition: a collection of elements that are some combination of primitive and other
composite data types

8

Trees

• Trees are a

 composite, hierarchical and graph-like data structure in which each element
has

 Only one predecessor, and

 Zero, one, or more successors

 In Computer Science,
trees grow down, not up!

 Predecessors are up

 Successors are down

 A tree is a special case of a list
9

Tree Terminology

• Trees are composed of:

 Nodes

 Elements in the data structure (hold data)

 Only one parent (unique predecessor)

 Zero, one, or more children (successors)

 ROOT node: top (or start) node; with no parent; there is only one root

 LEAF nodes: nodes without children (terminal)

 INTERNAL node: nodes with children (non-terminal)

 SIBLING nodes: nodes with the same parent

 Measure of DEGREE: how many children

 Edges

 Link parent node with children node (if applicable)

10

Tree Terminology ~ Relating to Height, Depth, Path

• Height and Depth

 HEIGHT of a node: is the longest path (# edges) from that node to a leaf

 Thus, all leaves have a height of zero (0)

 HEIGHT of a tree is the maximum depth (# edges) of a node in that tree

 Height of a tree = height of the root

 DEPTH of a node: length of the path (# edges) from the root to that node

 PATH: sequence of nodes n1, n2, ..., nk such that ni is parent of ni+1 for 1 ≤ i ≤ k

 LENGTH: number of edges in the path

 INTERNAL PATH LENGTH: sum of the depths of all the nodes

11

Trees

12

Tree height = 2

Trees are Important

• Trees are important for cognition and computation.

What are some examples of trees and tree usages?

 Parse trees: language processing, human or computer (compilers)

 Family (genealogy) trees (can be complicated with some complex family relationships)

 The Linnaean taxonomy (kingdom, phylum, ..., species)

 File systems (directory structures on a computer)

 … others?

13

Tree Definitions and Terms

• Binary tree:

 A tree in which each node has at most two (2) children

 Children denoted as left child or right child

• General tree definition:

 A set of nodes T (possibly empty) with a distinguished node, the root

 All other nodes form a set of disjoint subtrees Ti, in which

 each is a tree in its own right

 each is connected to the root with an edge

 Note the recursive definition

 Each node is the root of a subtree

 A tree with no nodes → null or empty tree
14

Trees: Recursive Data Structure

• Recursive data structure: a data structure that contains references (or pointers) to

an instances of that same type
public class TreeNode<E> {

private E data;
private TreeNode<E> left;
private TreeNode<E> right;
…

}

• Recursion is a natural way to express many data structures

• For these, it’s natural to have recursive algorithms

• Tree operations may come in two flavors:

• NODE-SPECIFIC (NODE CLASS) (e.g. hasParent() or hasChildren())

• TREE-WIDE (TREE CLASS) (e.g. size() or height()) – requires tree traversal 15

Tree Traversals

16

Some Motivation…

• Lists are great for keeping objects in order. They’re less useful for searching

• Searching an unsorted list → O(n) (e.g. linear search)

• Searching a sorted list → O(lg n) (e.g. binary search)

 However, takes O(n lg n) to sort…

 And must be re-sorted as the list changes

• We know how to traverse a list – the order is obvious… but for other structures?

17

17

Tree Traversals – How?

•

18

Traversal Applications

When would we want to traverse a tree? What are some applications?

• Processing tree elements

• Make a clone (deep copy) of a tree

• Determine tree height

• Determine tree size (number of nodes)

• Searching

• …

19

Tree Traversals

• A tree traversal is a specific
order in which to trace the nodes
of a tree

 Visit every node once

• There are three common tree
traversals for binary trees:
(depth-first)

1.pre-order

2.in-order

3.post-order

• This order is applied
recursively

20

Tree Traversals

• In each technique, the left subtree is traversed recursively, the right subtree is

traversed recursively, and the root is visited

• What distinguishes the techniques from one another is the order of those 3 tasks

• Visiting a node entails doing some processing at that node (often it is just printing –

node label or its data)

• Note “in”, “pre”, and “post” refer to when we visit the root (of that subtree)

21

21

Tree Traversals

•

22

22

Preoder, Inorder, Postorder

• In Preorder, the root

is visited before (pre)

the subtrees traversals

• In Inorder, the root is

visited in-between left

and right subtree traversal

• In Postorder, the root

is visited after (post)

the subtrees traversals

Preorder Traversal:

1. Visit the root

2. Traverse left subtree

3. Traverse right subtree

Inorder Traversal:

1. Traverse left subtree

2. Visit the root

3. Traverse right subtree

Postorder Traversal:

1. Traverse left subtree

2. Traverse right subtree

3. Visit the root 23

[3 methods]

Let’s do an example first…

(Notice: this is a Binary Search Tree!) • pre-order: (root, left, right)

15, 5, 3, 12, 10, 6, 7,

13, 16, 20, 18, 23

• in-order: (left, root, right)

3, 5, 6, 7, 10, 12, 13,

15, 16, 18, 20, 23

• post-order: (left, right, root)

3, 7, 6, 10, 13, 12, 5,

18, 23, 20, 16, 15
24

• Prints in order: root, left, right

• It is also the simple

depth-first search

a b d g h e i c f j

25

Pre-order Traversal

• Gives prefix form of expression

26

Pre-order Traversal – Java Code

• Pre-order: node first, then children (this is pseudocode):

27

• The in-order traversal sorts the values

from smallest to largest for a Binary

Search Tree (BST)

(See “3 methods” slide)

• Prints in order: left, root, right

28

In-order Traversal (Projection)

• Gives infix form of expression (sans parenthesis)

29

In-order Traversal

• Another example:

30

In-order Traversal – Java Code

• In-order: left node first, then self, then right node:

31

• Prints in order: left, right, root

32

Post-order Traversal

• Gives postfix form of expression

Post-order Traversal – Java Code

• Post-order: children first, then node

 This method counts the number of nodes

34

Post-order Traversal – Java Code

• toString() method for a Binary Tree in the BinaryTreeNode Class – written like a post-

order traversal. Note here we check left and right before making recursive calls.

 Assuming reference points to the left and right subtree are called “left” and “right”

35

Tree Traversal “Trick”?

• Here’s a trick to help you remember

the traversal methods:

• pre-order ():

F, B, A, D, C, E, G, I, H

• in-order ():

A, B, C, D, E, F, G, H, I

• post-order ():

A, C, E, D, B, H, I, G, F

Picture credit: Pluke, Miles, and Jochen Burghardt (overlay)
36

Tree Traversal Practice

• Given a tree, you are expected to know how to do the pre-, in-, and post-order traversals

• Example: Write the 3 traversals of the given tree

• In-order: _______________________________________

• Pre-order: ______________________________________

• Post-order: _____________________________________

37

37

Practice (Answers)

38

38

Interesting / Extra…!

39

Depth First vs. Breadth First

Breadth First Depth First

40

40

Iterative Depth-First Search

• Depth-first search (DFS) goes deeply into the tree and then backtracks when it reaches the leaves.

• DFS pseudocode algorithm uses a Stack!

stack.push(root) // starting with empty stack, push root

while (stack is not empty):

n = stack.pop()

process(n) // “visit” or process this node

// right child pushed first so that left is processed first

if (right node not null):

stack.push(right child)

if (left node not null):

stack.push(left child)

This algorithm accomplishes a pre-order traversal

41

When would you use Depth-First?

• Often used when simulating games

• Populate a tree with all possible chess moves

• Perform a depth-first search to find a leaf node that ends in a win

• Follow the moves that lead to that leaf!

42

Iterative Breadth-First Search

• Breadth-first search (BFS) visits all notes on the same level before going to the next.

• BFS pseudocode algorithm uses a Queue!

queue.add(root) // starting with empty queue, add root

while (queue is not empty):

n = queue.remove()

process(n) // “visit” or process this node

// enqueue the left child before the right child

// so that left is processed first

if (left node not null):

queue.add(left child)

if (right node not null):

queue.add(right child)

43

When would you use Breadth-First?

• Breadth-First Search has an interesting property in that it can be used to find the

shortest path between two nodes

• See Dijkstra’s algorithm

(not a tree)

44

45

