Dz

'.

*
*

VERSITY
7VIRGINIA

CS 2100: Data Structures

@

Algorlthms 1

~Introduction to Trees and Tree Traversals~

Y/

-

Dr. Nada Basit /basit@virginia.edu
Spring 2022

Friendly Reminders

—_— .

- Masks are required at all times during class (University Policy)

- If you forget your mask (or mask is lost/broken), | have a few available
- Just come up to me at the start of class and ask!

- No eating or drinking in the classroom, please

- Our lectures will be recorded (see Collab) - please allow 24-48 hrs to post

- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©

Announcements / Reminders

—_— e ——

- Reminder of Homework Late Policy: [Announcement sent 02/14/2022]

* “Homework 1 (coding)” for each module:
- Official due date: \Wednesday by 11:59pm ET
- Late period (with 10% penalty): 1 week; until the following Wednesday by 11:59pm ET

* “Homework 2 (analysis)” for each module [if applicable]:
- Official due date: Friday by 11:59pm ET
- Late period (with 10% penalty): 3 days; until following Monday by 11:59pm ET

- Manage your time wisely, seek help (TAs or Profs) when needed, use grace period as your
extension if need be.

Data Structures

_

- If we have a good list implementation, do we need any other data structures?

- For computing: No

- We can compute everything with just lists (actually even less).
The underlying machine memory can be thought of as a list

- For thinking: yes
- Lists are a very limited way of thinking about problems

L.ist Recursive Data Structure

- Lists keep things in order

- Arrays
- Keep things in a fixed block of memory — which is good for some operations and not as

good for other operations
- Example: Add at the end of a list vs. add at beginning or middle of list

- Linked Lists
- Use reference pointers between list nodes (elements) to maintain order

- List Limitations
- In a list, every element has direct relationships with only two others: the predecessor and

the successor
* Access time: O(n) 20 HE 101 — 67

* Goal: ®(log n)
-+ — I — -
ad \ Tail

Hes

INDO-EUROPEAN

2
ANATOLIAN

wows| Tsakonian

Complex Relationships

Language Tree

CONTINENTAL

Ecclesiastical Latin

EASTERN

Aromanian
Campi
[Megleno-Romanian

BIHARI

Potwari Romani Pash:

Dogri Gujarati Kashmiri Haryanvi Dakhini Garhwali Nepali

GALLIC ‘ SOUTH
] [_CISALPINE][LANGUE D'OIL] [_OCCITAN +
[_Emilan][French][Catalan][Frlan | | [Sarikoli [Wazid [
[Mozarabic] [Gedn || CCvami
Tat

[(CARMENIAN | [TWEik]

Sonese Porluguese
Mirandese

Alemannic__] [North Frisian | [English

[Austro-Bavarian| [Saterland Frisian] [Scots]

Afrikaans Thuringian | [Swiss German Cimbrian | [West Frisian | [Yola_]

SLAVIC

Belorussian

Macedonian

Why Does This Matter Now?

—_— . —————

- This illustrates (again) important design ideas

- The tree itself is what we’re interested In
* There are tree-level operations on it (“ADT level” operations)
- A tree Is an abstract data type!

- The implementation is a recursive data structure

- There are recursive methods inside the node-level classes that are closely related
(same name!) to the tree-level operation

- Principles?
- abstraction (hiding details)
- delegation (helper classes, methods)

Data Types vs. Data Structures

_

- Data types can be...
- Simple or Composite

- Data structures are composite data types...

- Definition: a collection of elements that are some combination of primitive and other
composite data types

Trees

- Trees are a

- composite, hierarchical and graph-like data structure in which each element
has

- Only one predecessor, and
- Zero, one, or more successors

- In Computer Science,
trees grow down, not up!

- Predecessors are up
- Successors are down

- A tree is a special case of a list

Tree Terminology

- Trees are composed of:
Nodes
- Elements in the data structure (hold data)

Only one parent (unique predecessor)
Zero, one, or more children (successors)
ROOT node: top (or start) node; with no parent; there is only one root
LEAF nodes: nodes without children (terminal)
INTERNAL node: nodes with children (non-terminal)
SIBLING nodes: nodes with the same parent
- Measure of DEGREE: how many children
Edges
- Link parent node with children node (if applicable)

Tree Terminology ~ Relating to Height, Depth, Path

Helght and Depth

HEIGHT of a node: is the longest path (# edges) from that node to a leaf

- Thus, all leaves have a height of zero (0)

HEIGHT of a tree is the maximum depth (# edges) of a node in that tree
Height of a tree = height of the root

DEPTH of a node: length of the path (# edges) from the root to that node

PATH: sequence of nodes n,, n,, ..., n, such that n; is parent of n;,, for 1 <i <k

LENGTH: number of edges in the path

INTERNAL PATH LENGTH: sum of the depths of all the nodes

Trees

oot Tree height = 2

interior node

chitd ofa <) (d)(e) (1) (&)

root
height = 3, depth = 0 a $

parent of ¢

leaf node

height = 1 (B) or 2 (H). depth = 1 a

hEight:ﬂ{EﬂEEp’tE}.dEp’[h:ElA||G||D| E

I & g

height = 0,
IEE”ES""""' depth =3 Y

tree height = 3

12

‘Trees are Important

—_— e ——

- Trees are important for cognition and computation.
What are some examples of trees and tree usages?

- Parse trees: language processing, human or computer (compilers)
- Family (genealogy) trees (can be complicated with some complex family relationship
* The Linnaean taxonomy (kingdom, phylum, ..., species)
- File systems (directory structures on a computer)
. others? |)

Tree Definitions and Terms

- Binary tree:
- A tree In which each node has at most two (2) children
- Children denoted as left child or right child

- General tree definition:
[- A set of nodes T (possibly empty) with a distinguished node, the root]
- All other nodes form a set of disjoint subtrees T;, In which
- each is atree in its own right
- each Is connected to the root with an edge
- Note the recursive definition
- Each node is the root of a subtree
-[A tree with no nodes - null or empty tree]

Trees: Recursive Data Structure

—_— . —————

Recursive data structure: a data structure that contains references (or pointers) to
an instances of that same type

/public class TreeNode<E> {
private E data;

private TreeNode<E> left;
private TreeNode<E> right;

_} y
Recursion is a natural way to express many data structures

For these, it’s natural to have recursive algorithms

Tree operations may come in two flavors:
» NODE-SPECIFIC (NODE CLASS) (e.g. hasParent() Or hasChildren())
» TREE-WIDE (TREE CLASS) (e.g. size() Or height()) — requires tree traversal

Tree Traversals

Some Motivation...

—_— .

- Lists are great for keeping objects in order. They’re less useful for searching
- Searching an unsorted list = O(n) (e.g. linear search)

- Searching a sorted list - O(lg n) (e.g. binary search)
- However, takes O(n Ig n) to sort...

- And must be re-sorted as the list changes

- We know how to traverse a list — the order is obvious... but for other structures?

Tree Traversals — How?

* There are many different ways to do this!

gl i ol

Traversal Applications

—_—

When would we want to traverse a tree? What are some applications?

- Processing tree elements

- Make a clone (deep copy) of a tree

- Determine tree height

- Determine tree size (number of nodes)

- Searching

1C

f

trees
1ed

1S a specl
1

mary
1S app

ly

0))
D)
o)
o
c
D
<
+~
D
o
<
—
+~
o
+~
<
o
o=

for b
first)
-order
order
order

pre
post-
der

t every node once
1n

1
1S OT

1
2
3

Th
recursive

There are three common tree

order in wh
of a tree

S
traversals
(depth-

Tree Traversals

- A tree traversal

Enﬁm\h&i,ﬂ\.ﬂ_ B ‘u e

ﬂlt«k el L

%@ﬁﬁﬁﬁ&ws

ey LTI AOT Caes i ey | e
—— l..l.lll TG PN 1L .A.n,r:£

N\ 2

, - -&w’

I T R v R NN .nﬂéﬂd
oy :«n! e \.I!ib.d..liq. m——

R 6 ?ﬂ«lgﬁﬁﬂm_: 3

SR 00— — A~ T &

‘5&5@

& % 181 L

e N

~tiLas :.Ln.,

(S A ?ﬂﬁﬁﬁlﬁsﬁﬁgﬁﬁ.ﬁ}%

R O L T e —

e \.‘\!,Alvrdllm..u
e S

A 25

i&dcow MENGR ST,

‘. it /w\a

w'ﬂ

T e P

0 1 R R R e

=y ¢.m P u.-nahﬂ.s.anzﬁw!vl.'!) oo

bR _nm»

Tree Traversals

—_— . —————

- In each technique, the left subtree is traversed recursively, the right subtree is
traversed recursively, and the root is visited

- What distinguishes the techniques from one another is the order of those 3 tasks

- Visiting a node entails doing some processing at that node (often it is just printing —
node label or its data)

[- Note “In”, “pre”, and “post” refer to when we visit the root (of that subtree)]

Tree Traversals

—_— .

- In each technique, the left subtree is always traversed (recursively)
BEFORE the right subtree is traversed!

* Preoder, Inorder, Postorder

- —

- In Preorder, the root Preorder Traversal:
1. Visit the root

Is visited before (pre) 2. Traverse left subtree

the subtrees traversals 3. Traverse right subtree
- In Inorder, the root Is Inorder Traversal:

visited in-between left 1. Traverse left subtree

_ 2. Visit the root

and right subtree traversal 3. Traverse right subtree
- In Postorder, the root Postorder Traversal:

is visited after (post) 1. Traverse left subtree

2. Traverse right subtree
the subtrees traversals 3 Visit the root

Tree Traversal Example [3 methods]

Let’s do an example first...
(Notice: this is a Binary Search Tree!)

- pre-order: (root, left, right)

15, 5, 3,12, 10, 6, 7,
13, 16, 20, 18, 23

- in-order: (left, root, right)

3,5,6,7,10, 12, 13,
15, 16, 18, 20, 23

- post-order: (left, right, root)

3, 7,6, 10, 13,12, 5,
18, 23, 20, 16, 15

Pre-order Traversal

- Prints in order: root, left, right

- It 1s also the simple

depth-first search

"

abc

Pt

abdgheicft]

Pre-order Traversal

- Gives prefix form of expression

/ *+ab-cd+e f

TN
; 1

gtfz

1

3

4

Pre-order:/ * 5 6 * + 1 2 - 3 4

Pre-order Traversal — Java Code

- Pre-order: node first, then children (this is pseudocode):

public class Tree{
private Node root;

public void printTree(){
printTree(root);

}

private void printTree(Node curNode) {
if(curNode == null) return;

System.out.println(curNode.value + " ");
printTree(curNode.left);
printTree(curNode.right);

In-order Traversal

- The in-order traversal sorts the values
from smallest to largest for a Binary
Search Tree (BST)

(See “3 methods” slide)

- Prints in order: left, root, right q
" /.\ .A

bac

gdhbeiafjc

In-order Traversal (Projection)

- Gives infix form of expression (sans parenthesis)

Expression Tree

©
T v \ 4 T Tl v
a + b * ¢ - d/ e + f

g dh b e 1a f jc

In-order Traversal

- Another example:

1 2 3 4

In-order: (54+46) / ((1+2)*(3-4))

In-order Traversal — Java Code

—_— . —————

- In-order: left node first, then self, then right node:

private void printTree(Node curNode) {
if(curNode == null) return;

printTree(curNode.left);
System.out.println(curNode.value +);
printTree(curNode.right);

Post-order Traversal

- Prints in order: left, right, root

o KNT

bca ghdiebjfca

/

Post-order Traversal / \l
g
\
2

- Gives postfix form of expression

K ﬁf/g«

ab+cd- *ef +/

Post-order:5 6 * 1 2 + 3 4 - * /

Post-order Traversal — Java Code

- Post-order: children first, then node
- This method counts the number of nodes

private void numNodes(Node root) {
if(root == null) return 9;

int sum = numNodes(root.left) + numNodes(root.right);
return sum+1l;

Post-order Traversal — Java Code

- toString() method for a Binary Tree in the BinaryTreeNode Class — written like a post-
order traversal. Note here we check left and right before making recursive calls.

- Assuming reference points to the left and right subtree are called “left” and “right”

@Override
public String toString() {
String retval = "";

if (left != null)

retVal += left.toString(); // recursive call on left
if (right != null)

retVal += right.toString(); // recursive call on right
retVal += "("+data+")"; // add this node's data
return retVal;

Tree Traversal “Trick”?

- Here’s a trick to help you remember
the traversal methods:

- pre-order (red):
FB,A D CEGIH

- in-order ():
ABCDEFGH,I \

- post-order (green):
A, C,EDBHIGF

Picture credit: Pluke, Miles, and Jochen Burghardt (overlay)

Tree Traversal Practice

_

- Glven a tree, you are expected to know how to do the pre-, in-, and post-order traversals

- Example: Write the 3 traversals of the given tree

Luke
Han Vader
PN AN
Chewbacca Leia Obi Yoda
_.-""'"FFF-
Lando
- In-order:
- Pre-order:

- Post-order:

Practice (Answers)

Luke
// \
Han Vader
P AN
Chewbacca Leia Obi Yoda

In-order: Chewbacca, Han, Lando, Leia, Luke, Obi, Vader, Yoda
Pre-order: Luke, Han, Chewbacca, Leia, Lando, Vader, Obi, Yoda
Post-order: Chewbacca, Lando, Leia, Han, Obi, Yoda, Vader, Luke

Interesting / Extra...!

Depth First vs. Breadth First

- — ., ———

Breadth First Depth First

| EE Y

Iterative Depth-First Search

—_— .

- Depth-first search (DFS) goes deeply into the tree and then backtracks when it reaches the leaves.

- DFS pseudocode algorithm uses a Stack!
stack.push(root) // starting with empty stack, push root
while (stack is not empty):
n = stack.pop()
process(n) // “visit” or process this node
// right child pushed first so that left 1s processed first
if (right node not null):
stack.push(right child)
if (left node not null):
stack.push(left child)

This algorithm accomplishes a pre-order traversal

When would you use Depth-First?

—_— .

- Often used when simulating games
- Populate a tree with all possible chess moves
- Perform a depth-first search to find a leaf node that ends in a win

- Follow the moves that lead to that leaf!

. A
® K 2
ol L
b3 F
B P28
2 ’
/n' .
. . l[.
i ,:l'. |'. ’ H
ik 3 | o 818 2l

Iterative Breadth-First Search

- Breadth-first search (BFS) visits all notes on the same level before going to the next.

- BFS pseudocode algorithm uses a Queue!

queue.add(root) // starting with empty queue, add root

while (queue is not empty):

n = queue.remove()
process(n) // “visit” or process this node
// enqueue the Lleft child before the right child

// so that left 1s processed first

if (left node not null):
queue.add(left child)

if (right node not null):
queue.add(right child)

When would you use Breadth-First?

- Breadth-First Search has an interesting property in that it can be used to find the
shortest path between two nodes

- See Dijkstra’s algorithm

(not a tree)

Practice makes

perfect! &2 X
Unofficial Exercise: [~ 0 G00) (791 _
On this (wavey!) (50 (653 @50 808
binary tree, show: x

in-order, (a8) (389 693
pre-order, and
post-order traversal | (2 03 602

