
CS 2100: Data Structures & Algorithms 1

Trees
~Introduction to Trees and Tree Traversals~

Dr. Nada Basit // bas i t@virg in ia .edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Announcements / Reminders

• Reminder of Homework Late Policy: [Announcement sent 02/14/2022]

 “Homework 1 (coding)” for each module:

 Official due date: Wednesday by 11:59pm ET

 Late period (with 10% penalty): 1 week; until the following Wednesday by 11:59pm ET

 “Homework 2 (analysis)” for each module [if applicable]:

 Official due date: Friday by 11:59pm ET

 Late period (with 10% penalty): 3 days; until following Monday by 11:59pm ET

 Manage your time wisely, seek help (TAs or Profs) when needed, use grace period as your
extension if need be.

3

Data Structures

• If we have a good list implementation, do we need any other data structures?

• For computing: no

 We can compute everything with just lists (actually even less).
The underlying machine memory can be thought of as a list

• For thinking: yes

 Lists are a very limited way of thinking about problems

4

List Recursive Data Structure

• Lists keep things in order

 Arrays

 Keep things in a fixed block of memory – which is good for some operations and not as
good for other operations

 Example: Add at the end of a list vs. add at beginning or middle of list

 Linked Lists

 Use reference pointers between list nodes (elements) to maintain order

• List Limitations

 In a list, every element has direct relationships with only two others: the predecessor and
the successor

 Access time: Θ(n)

 Goal: Θ(log n)

5

C
om

pl
ex

 R
el

at
io

ns
hi

ps
:

L
an

gu
ag

e
T

re
e

6

Why Does This Matter Now?

• This illustrates (again) important design ideas

• The tree itself is what we’re interested in

 There are tree-level operations on it (“ADT level” operations)

 A tree is an abstract data type!

• The implementation is a recursive data structure

 There are recursive methods inside the node-level classes that are closely related
(same name!) to the tree-level operation

• Principles?

 abstraction (hiding details)

 delegation (helper classes, methods)

7

Data Types vs. Data Structures

• Data types can be…

 Simple or Composite

• Data structures are composite data types…

 Definition: a collection of elements that are some combination of primitive and other
composite data types

8

Trees

• Trees are a

 composite, hierarchical and graph-like data structure in which each element
has

 Only one predecessor, and

 Zero, one, or more successors

 In Computer Science,
trees grow down, not up!

 Predecessors are up

 Successors are down

 A tree is a special case of a list
9

Tree Terminology

• Trees are composed of:

 Nodes

 Elements in the data structure (hold data)

 Only one parent (unique predecessor)

 Zero, one, or more children (successors)

 ROOT node: top (or start) node; with no parent; there is only one root

 LEAF nodes: nodes without children (terminal)

 INTERNAL node: nodes with children (non-terminal)

 SIBLING nodes: nodes with the same parent

 Measure of DEGREE: how many children

 Edges

 Link parent node with children node (if applicable)

10

Tree Terminology ~ Relating to Height, Depth, Path

• Height and Depth

 HEIGHT of a node: is the longest path (# edges) from that node to a leaf

 Thus, all leaves have a height of zero (0)

 HEIGHT of a tree is the maximum depth (# edges) of a node in that tree

 Height of a tree = height of the root

 DEPTH of a node: length of the path (# edges) from the root to that node

 PATH: sequence of nodes n1, n2, ..., nk such that ni is parent of ni+1 for 1 ≤ i ≤ k

 LENGTH: number of edges in the path

 INTERNAL PATH LENGTH: sum of the depths of all the nodes

11

Trees

12

Tree height = 2

Trees are Important

• Trees are important for cognition and computation.

What are some examples of trees and tree usages?

 Parse trees: language processing, human or computer (compilers)

 Family (genealogy) trees (can be complicated with some complex family relationships)

 The Linnaean taxonomy (kingdom, phylum, ..., species)

 File systems (directory structures on a computer)

 … others?

13

Tree Definitions and Terms

• Binary tree:

 A tree in which each node has at most two (2) children

 Children denoted as left child or right child

• General tree definition:

 A set of nodes T (possibly empty) with a distinguished node, the root

 All other nodes form a set of disjoint subtrees Ti, in which

 each is a tree in its own right

 each is connected to the root with an edge

 Note the recursive definition

 Each node is the root of a subtree

 A tree with no nodes → null or empty tree
14

Trees: Recursive Data Structure

• Recursive data structure: a data structure that contains references (or pointers) to

an instances of that same type
public class TreeNode<E> {

private E data;
private TreeNode<E> left;
private TreeNode<E> right;
…

}

• Recursion is a natural way to express many data structures

• For these, it’s natural to have recursive algorithms

• Tree operations may come in two flavors:

• NODE-SPECIFIC (NODE CLASS) (e.g. hasParent() or hasChildren())

• TREE-WIDE (TREE CLASS) (e.g. size() or height()) – requires tree traversal 15

Tree Traversals

16

Some Motivation…

• Lists are great for keeping objects in order. They’re less useful for searching

• Searching an unsorted list → O(n) (e.g. linear search)

• Searching a sorted list → O(lg n) (e.g. binary search)

 However, takes O(n lg n) to sort…

 And must be re-sorted as the list changes

• We know how to traverse a list – the order is obvious… but for other structures?

17

17

Tree Traversals – How?

•

18

Traversal Applications

When would we want to traverse a tree? What are some applications?

• Processing tree elements

• Make a clone (deep copy) of a tree

• Determine tree height

• Determine tree size (number of nodes)

• Searching

• …

19

Tree Traversals

• A tree traversal is a specific
order in which to trace the nodes
of a tree

 Visit every node once

• There are three common tree
traversals for binary trees:
(depth-first)

1.pre-order

2.in-order

3.post-order

• This order is applied
recursively

20

Tree Traversals

• In each technique, the left subtree is traversed recursively, the right subtree is

traversed recursively, and the root is visited

• What distinguishes the techniques from one another is the order of those 3 tasks

• Visiting a node entails doing some processing at that node (often it is just printing –

node label or its data)

• Note “in”, “pre”, and “post” refer to when we visit the root (of that subtree)

21

21

Tree Traversals

•

22

22

Preoder, Inorder, Postorder

• In Preorder, the root

is visited before (pre)

the subtrees traversals

• In Inorder, the root is

visited in-between left

and right subtree traversal

• In Postorder, the root

is visited after (post)

the subtrees traversals

Preorder Traversal:

1. Visit the root

2. Traverse left subtree

3. Traverse right subtree

Inorder Traversal:

1. Traverse left subtree

2. Visit the root

3. Traverse right subtree

Postorder Traversal:

1. Traverse left subtree

2. Traverse right subtree

3. Visit the root 23

[3 methods]

Let’s do an example first…

(Notice: this is a Binary Search Tree!) • pre-order: (root, left, right)

15, 5, 3, 12, 10, 6, 7,

13, 16, 20, 18, 23

• in-order: (left, root, right)

3, 5, 6, 7, 10, 12, 13,

15, 16, 18, 20, 23

• post-order: (left, right, root)

3, 7, 6, 10, 13, 12, 5,

18, 23, 20, 16, 15
24

• Prints in order: root, left, right

• It is also the simple

depth-first search

a b d g h e i c f j

25

Pre-order Traversal

• Gives prefix form of expression

26

Pre-order Traversal – Java Code

• Pre-order: node first, then children (this is pseudocode):

27

• The in-order traversal sorts the values

from smallest to largest for a Binary

Search Tree (BST)

(See “3 methods” slide)

• Prints in order: left, root, right

28

In-order Traversal (Projection)

• Gives infix form of expression (sans parenthesis)

29

In-order Traversal

• Another example:

30

In-order Traversal – Java Code

• In-order: left node first, then self, then right node:

31

• Prints in order: left, right, root

32

Post-order Traversal

• Gives postfix form of expression

Post-order Traversal – Java Code

• Post-order: children first, then node

 This method counts the number of nodes

34

Post-order Traversal – Java Code

• toString() method for a Binary Tree in the BinaryTreeNode Class – written like a post-

order traversal. Note here we check left and right before making recursive calls.

 Assuming reference points to the left and right subtree are called “left” and “right”

35

Tree Traversal “Trick”?

• Here’s a trick to help you remember

the traversal methods:

• pre-order ():

F, B, A, D, C, E, G, I, H

• in-order ():

A, B, C, D, E, F, G, H, I

• post-order ():

A, C, E, D, B, H, I, G, F

Picture credit: Pluke, Miles, and Jochen Burghardt (overlay)
36

Tree Traversal Practice

• Given a tree, you are expected to know how to do the pre-, in-, and post-order traversals

• Example: Write the 3 traversals of the given tree

• In-order: _______________________________________

• Pre-order: ______________________________________

• Post-order: _____________________________________

37

37

Practice (Answers)

38

38

Interesting / Extra…!

39

Depth First vs. Breadth First

Breadth First Depth First

40

40

Iterative Depth-First Search

• Depth-first search (DFS) goes deeply into the tree and then backtracks when it reaches the leaves.

• DFS pseudocode algorithm uses a Stack!

stack.push(root) // starting with empty stack, push root

while (stack is not empty):

n = stack.pop()

process(n) // “visit” or process this node

// right child pushed first so that left is processed first

if (right node not null):

stack.push(right child)

if (left node not null):

stack.push(left child)

This algorithm accomplishes a pre-order traversal

41

When would you use Depth-First?

• Often used when simulating games

• Populate a tree with all possible chess moves

• Perform a depth-first search to find a leaf node that ends in a win

• Follow the moves that lead to that leaf!

42

Iterative Breadth-First Search

• Breadth-first search (BFS) visits all notes on the same level before going to the next.

• BFS pseudocode algorithm uses a Queue!

queue.add(root) // starting with empty queue, add root

while (queue is not empty):

n = queue.remove()

process(n) // “visit” or process this node

// enqueue the left child before the right child

// so that left is processed first

if (left node not null):

queue.add(left child)

if (right node not null):

queue.add(right child)

43

When would you use Breadth-First?

• Breadth-First Search has an interesting property in that it can be used to find the

shortest path between two nodes

• See Dijkstra’s algorithm

(not a tree)

44

45

