## CS 2100: Data Structures \& Algorithms 1

Trees
$\sim$ Recursion \& Examples~

Dr. Nada Basit// basit@virginia.edu Spring 2022

## In Order To Understand Trees... ... We Have To Understand Recursion


https://www.xked.com/688/

## Friendly Reminders

- Masks are required at all times during class (University Policy)
- If you forget your mask (or mask is lost/broken), I have a few available
- Just come up to me at the start of class and ask!
- No eating or drinking in the classroom, please
- Our lectures will be recorded (see Collab) - please allow $24-48$ hrs to post
- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©



## Announcements / Reminders

- Lab tonight (Monday):
- Take Quiz 4 for this week - LL, Stacks, and Queues (30 minutes) - come to lab on time!
- Once you're done with the quiz, you can work with your cohort on your Big-Oh assignments (coding and report)
- Reminder of Homework Late Policy:
[Announcement sent 02/14/2022]
- "Homework 1 (coding)" for each module:
- Official due date: Wednesday by 11:59pm ET
- Late period (with $10 \%$ penalty): 1 week; until the following Wednesday by 11:59 pm ET
- "Homework 2 (analysis)" for each module [if applicable]:
- Official due date: Friday by $11: 59 \mathrm{pm}$ ET
- Late period (with $10 \%$ penalty): 3 days; until following Monday by 11:59pm ET
- Manage your time wisely, seek help (TAs or Profs) when needed, use grace period as your extension if need be.


## Definition (don't write this one down!)

- Recursion


## Definition (don't write this one down!)

- Recursion
- see recursion



## What Is Recursion?

- A definition is recursive if it is defined in terms of itself
- Recursion is a natural way to express many algorithms - in which a method invokes itself to solve a problem.
- For recursive data-structures, recursive algorithms are a natural choice
- Recursive mindset:
- Recursion breaks a difficult problem into one or more simpler (smaller) versions of itself
- Why do we care? Trees use recursion ALL OF THE TIME. So, we need to know it.


## A recursive Solution contains:

## - Base Case

- The case for which the solution can be stated non-recursively (or solved directly)*. That is, directly solving the smallest instance of the problem.
- Recursive Case
- The case for which the solution is expressed in terms of a smaller version of itself. Solve a small chunk manually then invoke your method.
- You should be making progress towards your base case!


## Important Recursive Definitions

* [ Definition can't be completely self-referential! $\rightarrow$ need base case ]


## Recursion in Algorithms

- Grammar example: What is a noun phrase?
- a noun
- an adjective followed by a noun phrase
- List example: Consider the following list of numbers: $24,77,18,47$
- Such a list can be defined as follows:
- A LIST is a: number
or a: number comma LIST
- That is, a LIST is defined to be a single number, or a number followed by a comma followed by a LIST
- The concept of a LIST is used to define itself


## Recursion in Algorithms

- The recursive part of the LIST definition is used several times, terminating with the nonrecursive part:

```
number comma LIST
24 , 88, 40, 37
number comma LIST
88 , 40, 37
    number comma LIST
        40 , 37
            number
                                    3 7
```

Extra Examples

## Recursion in Algorithms

- The recursive part of the LIST definition is used several times, terminating with the nonrecursive part:



## Different Views of Recursion

- Recursive Definition: n ! $=\mathrm{n}$ * ( $\mathrm{n}-1$ )!
(This example is the definition of factorial. Non-math examples are common too)
- Recursive Procedure: a procedure that calls itself
- Recursive Data Structure: a data structure that contains a pointer to an instance of itself:

```
public class ListNode {
    Object nodeItem;
    ListNode next, previous;
}
```


## Questions To Ask Yourself

- How can we reduce the problem to smaller version of the same problem?
- How does each call make the problem smaller?
- What is the base case? (Non-recursive part)
- Will you always reach the base case?


## Back to Factorial

- Factorial: $n!=n \times(n-1)!$
- Base case: $\quad \mathrm{n}=0: \quad 0!=1$ (solved directly; $\underline{\text { no recursion) }}$
- Recursive case: $\quad \mathrm{n}>0$ : $\mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1)$ !
- Advice: always put the base case first!
- Let's convert this into code...


## Recursive Example: Factorial

- Factorial:
- $\mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1) \times(\mathrm{n}-2) \times \ldots \times 2 \times 1$
- n ! = n x ( $\mathrm{n}-1$ )!
- Solve by multiplying two numbers
- Note: $0!=1!=1$



## Recursive Example: Factorial (Convert To Code)

```
public int factorial (int n) {
    if (n == 0) //BASE CASE: n = 0: 0! = 1
    return 1;
    else //Recursive Case: n! = n x (n-1)!
    return n * factorial(n-1);
}
```


## Recursive Example: Factorial (Convert To Code)

```
public int factorial (int n) {
    if (n <= 0) //BASE CASE: n = 0 > 0! = 1
        return 1;
    else
        //Recursive Case: n! = n x (n-1)!
        return n * factorial(n-1);
}
```

- What if someone tries "-1"??

Recursion can be tricky! Always need to stop at a base case!

## Trace execution: Recursive Factorial (for n=5)

So ... going bottom to top:
return $5 *$ factorial(4)
return $4 *$ factorial(3)
return $3 *$ factorial(2)
return $2 *$ factorial(1)
return $1 * \underline{\text { factorial(0) }}$
return 1
return $1^{*}(1)$
return $2^{*}(1)$
return 3 * $\left(2^{*} 1\right)$
return $4^{*}\left(3^{*} 2^{*} 1\right)$ return $5 *\left(4^{*} 3 * 2 * 1\right)$ END

Result: $5^{*} 4^{*} 3^{*} 2^{*} 1=5$ !

## Why Do Recursive Methods Work?

- Activation Records on the Run-time Stack are the key:
- Each time you call a function (any function) you get a new activation record
- Each activation record contains a copy of all local variables and parameters for that invocation
- The activation record remains on the stack until the function returns, then it is destroyed
- Try yourself: use your IDE's debugger and put a breakpoint in the recursive algorithm. Look at the call-stack


## Factorial Example, n=4 (Run-time stack)

- New area of memory set aside for function ("fact") and its local variables
- Example showing the run-time stack with activation records
- Begin by calling the method, passing in the value Num=4

Num=4

$$
4^{*} \underline{\text { fact }(3)} \rightarrow
$$

Num=4 MAIN fact(4) $\rightarrow$

Num=3

$$
3^{*} \underline{\text { fact }(2)} \rightarrow
$$

Num=4

$$
4^{*} \text { fact }(3) \rightarrow
$$

Num=4 MAIN fact(4) $\rightarrow$

$$
\text { Num }=2 \quad 2^{*} \underline{\text { fact }(1)} \rightarrow
$$

Num=3

$$
3^{*} \text { fact }(2) \rightarrow
$$

Num=4

$$
4^{*} \text { fact }(3) \rightarrow
$$

Num=4
MAIN
fact(4) $\rightarrow$

Num $=1 \quad 1 * \underline{\text { fact }(0)} \rightarrow$
Num=2

$$
2^{*} \text { fact }(1) \rightarrow
$$

Num=3

$$
3^{*} \text { fact(2) } \rightarrow
$$

Num=4

$$
4^{*} \text { fact }(3) \rightarrow
$$

Num=4
MAIN
fact(4) $\rightarrow$


| Num=0 | *pop!** |
| :---: | :---: |
|  | return 1 |
| Num=1 | $\begin{aligned} & 1 \downarrow \\ & 1^{*} \text { fact }(0) \rightarrow 1 \end{aligned}$ |
| Num=2 | 2*fact(1) $\rightarrow$ |
| Num=3 | 3*fact(2) $\rightarrow$ |
| Num=4 | 4*fact(3) $\rightarrow$ |
| $\begin{aligned} & \text { Num }=4 \\ & \text { MAIN } \end{aligned}$ | fact(4) $\rightarrow$ |

Note: Activation records will be popped off the stack (once the method returns) - it is just not shown here in this example (so you can see how it all works)

$$
4^{*} \text { fact }(3) \rightarrow
$$

Num=4
MAIN


| Num=0 | *pop!* |  |
| :---: | :---: | :---: |
| Num=1 | ${ }^{\text {ppop! }}$ * | Note: Activation records will be |
|  | $1^{*}$ fact ( 0 ) $\rightarrow$ |  |
| Num=2 | *pop!* |  |
|  | $2^{*}$ fact(1) $\rightarrow$ | popped off the stack (once the method returns) - it is just not shown here in this example (so you can see how it all works) |
| Num=3 | 2 |  |
|  | $3^{*} \text { fact }(2) \rightarrow 6$ |  |
| Num=4 |  |  |
|  | 4*fact(3) $\rightarrow$ |  |
| Num=4 |  |  |
| MAIN | fact(4) $\rightarrow$ | 28 |


| Num=0 | ${ }^{\text {ppop!* }}$ | $\begin{aligned} & \begin{array}{c} \text { Note: Activation } \\ \text { records will be } \\ \text { popped off the stack } \end{array} \\ & \text { (once the method } \\ & \text { returns) - it is just } \\ & \text { not shown here in } \\ & \text { this example (so you } \\ & \text { can see how it all } \\ & \text { works) } \end{aligned}$ |
| :---: | :---: | :---: |
| Num=1 | $1^{*} \text { fact }(0) \rightarrow \text { pop!* }$ |  |
| Num=2 | $2^{*} \text { fact }(1) \rightarrow \stackrel{* \text { pop! }}{\rightarrow}$ |  |
| Num=3 | $3^{*} \text { fact }(2) \rightarrow$ |  |
| Num=4 | $\stackrel{\sigma_{\downarrow}}{4^{*} \text { fact }(3) \rightarrow 24}$ |  |
| $\begin{aligned} & \text { Num=4 } \\ & \text { MAIN } \end{aligned}$ | fact(4) $\rightarrow$ |  |


| Num=0 | *pop!* |  |
| :---: | :---: | :---: |
| Num=1 | *pop!* | Note: Activation records will be |
|  | $1^{*}$ fact ( $\theta$ ) $\rightarrow$ |  |
| Num=2 | ${ }^{\text {*pop! }}$ |  |
|  | 2*fact(1) $\rightarrow$ | popped off the stack (once the method returns) - it is just not shown here in this example (so you can see how it all works) |
| Num=3 | *pop!* |  |
|  | $3^{*}$ fact(2) $\rightarrow$ |  |
| Num=4 | ${ }^{\text {popp!* }}$ |  |
|  | 4*fact(3) $\rightarrow$ |  |
| Num=4 | 24 |  |
| MAIN | $\mathrm{fact}(4) \rightarrow 24$ | 30 |

## At the end the stack

has popped off all activation records, and execution
returns to who called
the fact() method $\rightarrow$
Main
Num=4 MAIN
fact(4) $\rightarrow 24$

## Recursion vs. Iteration

```
Recursion
public int factorial(int n) {
    // base case
    if (n <= 0)
        return 1;
    // recursive case
    return n * factorial(n-1);
}
```

Build solution from top down

## Iteration

```
public int factorial(int n) {
    int fact_n = 1;
        for (int i = 1; i <= n; i++){
        fact_n = fact_n * i;
        }
        return fact }\mp@subsup{\mp@code{z2}}{2}{n}\mathrm{ ;
}
```

Build solution from bottom up

## Recursion vs. Iteration

## Recursion

public int factorial(int n) \{


Build solution from top down

## Iteration

public int factorial(int n) \{ int fact_n = 1; start at 1 and go up to $n$
for loop for (int $i=1 ; i<=n$; i++) fact_n = fact_n * i; \} accumulating value return $\mathrm{fact}_{32} n$;
\}
Build solution from bottom up

## Broken Recursive Factorial \{incorrect code: do NOT use/copy!\}

public static int Brokenfactorial(int n)\{ int $x=$ Brokenfactorial(n-1);
if ( $\mathrm{n}<=0$ ) return 1;
else
return $n$ * x;
\}

- What's wrong here?
- Trace calls "by hand"


## Broken Recursive Factorial

## \{incorrect code: don't use/copy!\}

```
public static int Brokenfactorial(int n){
    int x = Brokenfactorial(n-1);
    if (n <= 0)
            return 1;
    else
        return n * x;
}
```

- What's wrong here? Trace calls "by hand"
- $\operatorname{BrFact}(2)$-> $\operatorname{BrFact}(1)$-> $\operatorname{BrFact}(0)$ $->\operatorname{BrFact}(-1)$ $->\operatorname{BrFact}(-2)$->..
- Problem: we do the recursive call first before checking for the bả̉e case
- Never stops! Like an infinite loop!


## Recursive Design

- Recursive methods/functions require:

1. One or more (non-recursive) base cases that will cause the recursion to end

$$
\text { if ( } n<=0 \text { ) return 1; }
$$

2. One or more recursive cases that operate on smaller problems and get you closer to the base case
```
return n * factorial(n-1);
```

- Note: The base case(s) should always be checked before the recursive call(s)


## Summary

- Recursive problem can be broken into two parts:
- Base case: The case for which the solution can be stated non-recursively
- Recursive case: The case for which the solution is expressed in terms of a smaller version of itself
- Recursion is tricky!
- Always put the base case first! (If more than one, put all of them first!)
- Base case should eventually happen given ANY input
- Recursive call should always get us closer to base case(s)
- Recursive solution may not always be the best (even though iß ${ }^{\text {Tmight look nice! }) ~}$


# More <br> Recursive Examples 

Seeing many examples will help!

## Iterative Example: Printing A List

- Here's a method that prints a simple list iteratively:

```
public void printList(int[] list){
    for(int i = 0; i < list.length; i++){
        System.out.println(List[i] + " ");
    }
}
```

- What about printing recursively?

Pseudocode:
//As long as the list is not empty
//Print one item in list (current position; starting at zero)
//Then print the REST of the list recursively

## Iterative vs Recursive Example: Printing A List

- Here's a method that prints a simple list iteratively:

```
public void printList(int[] list){
    for(int i = 0; i < list.length; i++){
        System.out.println(List[i] + " ");
    }
}
```

- Here's a method that does the same thing, but recursively:

```
public void printList(int[] list, int curIndex){
    //Base case, if curIndex has run off end of list, do nothing
    if(curIndex >= list.length) return;
    //print one element and then recursively print the rest
    System.out.print(List[curIndex] + " ");
    printList(list, curIndex+1); }
```


## Recursive Example: Printing A List (using a helper method)

- Those who use our code might not know what curIndex is... And might not realize we have to set it at zero. So, we use a helper method!

```
public void printList(int[] list) { // public method
    printList(list, 0); //print starting at index 0 (already set!)
}
//private so nobody can invoke this method directly
private void printList(int[] list, int curIndex){
    //Base case
    if(curIndex >= list.length) return;
    //print one element and then recursively print the rest
    System.out.print(list[curIndex] + " ");
    printList(list, curIndex+1);
}
```


## Recursive Example: Binary Search [pseudocode]

- Let's say we're trying to find a particular page in a textbook using Binary Search:

```
find(page_number, book) {
    flip to middle;
    if page == page_number
            return found;
    if page_number is before page
            return find(page_number, first half); // search 1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ half
    if page_number is after page
            return find(page_number, second half); // search 2nd half
}
```


## Recursive Example: Binary Search [pseudocode]

- More general Binary Search algorithm (pseudocode)

```
public static int binarySearch(int[] list, int value) {
    return binSearch(list, target, 0, list.length -1); //start: entire list is valid
}
private static int binSearch(int[] list, int first, int last, int target) {
    //Base Case: if no where left to look (if low > high) return (-1)
    //Calculate mid (an int)
    //Print mid - the item that is being compared
    //if mid is equal to target, return mid
    //else if mid is less than the target, first = mid + 1 (target in top half)
    //else (mid is greater than the target), last = mid - 1 (target in bottom half)
    //return [a recursive call to binSearch, passing values list, first, last, target]
}
```


## Recursive Example: Binary Search

- This Binary Search algorithm has an int return type. What does the returned int represent? It could also be boolean. How would you change it? [Hint: not many things will change.]

```
int binSearch(int[] array, int first, int last, int target) {
    if (first <= last) {
        int mid = (first + last) / 2;
        if (target == array[mid])
            return mid;
        if (target < array[mid])
            return binSearch(array, first, mid - 1, target);
        else if (target > array[mid]);
            return binSearch(array, mid + 1, last, target);
    }
    return -1;
}
```


## Recursive Example: Palindrome

- The word palindrome is derived from the Greek palíndromos, meaning running back again (palín = AGAIN + drom-, drameîn = RUN)
- A word that is a palindrome can be read the same in both directions. Some simple examples are:


## RACECAR LEVEL CIVIC DEED

- An empty string or a single character is a palindrome. Larger words: From out to in, characters must match (see next slide)


OVERALL IDEA:

- Test first and last character only
- If they match AND
- Everything inside is also a palindrome, then TRUE!


## Recursive Example: Palindrome

- Let's assume the method is called isPalindrome()
- This will test to see if a given string is a palindrome

```
public boolean isPalindrome(String s, int l, int r){
    //Base case
    if(l > r) return true;
    //Recursive call: if outside chars match and inside is Palindrome, then return true
    return (s.charAt(1) == s.charAt(r))
        && isPalindrome(s, l+1, r-1);
}
```


## Recursive Example: Palindrome (using a helper method)

```
public boolean isPalindrome(String s) {
        return isPalindrome(s, 0, s.length()-1);
}
private boolean isPalindrome(String s, int l, int r){
        //Base case
        if(l > r) return true;
        //Recursive call: if outside chars match and inside is Palindrome, then return true
        return (s.charAt(l) == s.charAt(r))
            && isPalindrome(s, l+1, r-1);
```

\}

## Recursive Example: Palindrome [Another Solution]

```
public static boolean palindrome (String s) {
    if (s.length() == 0 || s.length() == 1) // base cases, length is 0 or 1
        return true; // an empty string or a single character is a Palindrome
    if (s.charAt(0) == s.charAt(s.length()-1)) { // if first == last character
        // Uncomment the next TWO lines to see recursive palindrome() in action!
        System.out.print(s.charAt(0) + " and " + s.charAt(s.length()-1) + " match! ");
        System.out.println("Trying: " + s.substring(1, s.length()-1));
        // recursive call: call palindrome on the rest of the string:
        return palindrome(s.substring(1, s.length()-1));
        // Note: if string length = 5, s.substring goes from indices 1 --> 3
        // i.e. up to, but NOT including, the second parameter (5-1=4)
        // (New string sent in recursive call is old string with first and
        // last characters removed)
    }
    return false; // If the first and last characters don't match, return false
}
```


## Other Recursive Examples

- Towers of Hanoi
- Euclid's Algorithm
- Fractals
- General activities like
- Is string a Palindrome?
- Reverse a String



## Towers of Hanoi

- A game that is old and famous!
- The objective is to transfer entire tower A to the peg B, moving only one disk at a time and never moving a larger one onto a smaller one
- The algorithm to transfer n disks from A to B in general: We first transfer $\boldsymbol{n} \boldsymbol{- 1}$ smallest disks to peg C, then move the largest one to the peg B and finally transfer the $\boldsymbol{n} \boldsymbol{- 1}$ smallest back onto largest (peg B)
- The number of necessary moves to transfer $\boldsymbol{n}$ disks can be found by $T(n)=2^{n}-1$


## Euclid's Algorithm

- Calculating the greatest common divisor (gcd) of two positive integers is the largest integer that divides evenly into both of them
- E.g. greatest common divisor of 102 and 68 is 34 since both 102 and 68 are multiples of 34, but no integer larger than 34 divides evenly into 102 and 68
- Logic: If $p>q$, the $\operatorname{gcd}$ of $p$ and $q$ is the same as the gcd of q and $\mathrm{p} \% \mathrm{q}$ (where $\%$ is the remainder operator)
- Stop recursion once $q$ becomes zero; at which point return $p$

