
CS 2100: Data Structures & Algorithms 1

Trees
~Recursion & Examples~

Dr. Nada Basit // basi t@virg inia .edu

Spring 2022



In Order To Understand Trees…
… We Have To Understand Recursion

2

h t t p s ://www .x k c d . c om/688/



Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

3



Announcements / Reminders

• Lab tonight (Monday):

 Take Quiz 4 for this week – LL, Stacks, and Queues (30 minutes) – come to lab on time!

 Once you’re done with the quiz, you can work with your cohort on your Big-Oh assignments 
(coding and report)

• Reminder of Homework Late Policy: [Announcement sent 02/14/2022]

 “Homework 1 (coding)” for each module:

 Official due date: Wednesday by 11:59pm ET

 Late period (with 10% penalty): 1 week; until the following Wednesday by 11:59pm ET

 “Homework 2 (analysis)” for each module [if applicable]:

 Official due date: Friday by 11:59pm ET

 Late period (with 10% penalty): 3 days; until following Monday by 11:59pm ET

 Manage your time wisely, seek help (TAs or Profs) when needed, use grace period as your 
extension if need be. 4



Definition (don’t write this one down!)

• Recursion

5



Definition (don’t write this one down!)

• Recursion

 see recursion

6

6



What Is Recursion?

• A definition is recursive if it is defined in terms of itself

• Recursion is a natural way to express many algorithms – in which a method invokes itself to 

solve a problem.

• For recursive data-structures, recursive algorithms are a natural choice

• Recursive mindset:



• Why do we care? Trees use recursion ALL OF THE TIME. So, we need to know it. 

7



Important 
Recursive 
Definitions

A recursive Solution contains:

• BASE CASE

 The case for which the solution 
can be stated non-recursively
(or solved directly)*. That is, 
directly solving the smallest 
instance of the problem.

• RECURSIVE CASE

 The case for which the solution 
is expressed in terms of a 
smaller version of itself. 
Solve a small chunk manually 
then invoke your method.

 You should be making progress 
towards your base case! 

* [ Definition can’t be completely 

self-referential! → need base case ]



Recursion in Algorithms

• Grammar example: What is a noun phrase?

 a noun

 an adjective followed by a noun phrase

• List example: Consider the following list of numbers: 24, 77, 18, 47

 Such a list can be defined as follows:

 A LIST is a: number
or a: number comma LIST

 That is, a LIST is defined to be a single number, or a number followed by a comma 
followed by a LIST

 The concept of a LIST is used to define itself

9



Recursion in Algorithms
• The recursive part of the LIST definition is used several times, terminating with the non-

recursive part:

number comma LIST

24     ,   88, 40, 37

number comma LIST

88     ,   40, 37

number comma LIST

40     , 37

number

37

10



Recursion in Algorithms
• The recursive part of the LIST definition is used several times, terminating with the non-

recursive part:

number comma LIST

24     ,   88, 40, 37

number comma LIST

88     ,   40, 37

number comma LIST

40     , 37

number

37

11



Different Views of Recursion

• Recursive Definition:  n! = n * (n-1)!
(This example is the definition of factorial. Non-math examples are common too)

• Recursive Procedure: a procedure that calls itself

• Recursive Data Structure: a data structure that contains a pointer to an instance of itself: 

public class ListNode {
Object nodeItem;
ListNode next, previous;
…

}

12



Questions To Ask Yourself

• How can we reduce the problem to smaller  version of the same problem? 

• How does each call make the problem smaller? 

• What is the base case? (Non-recursive part)

• Will you always reach the base case?

13



Back to Factorial

• Factorial:  n! = n x (n-1)!

• Base case: n = 0:     0! = 1 (solved directly; no recursion)

• Recursive case: n > 0:     n! = n x (n-1)!

•

•

14



Recursive Example: Factorial
• Factorial:

▪n! = n x (n-1) x (n-2) x … x 2 x 1

▪n! = n x (n-1)!

▪Solve by multiplying two numbers

▪Note:  0! = 1! = 1

15

15



Recursive Example: Factorial (Convert To Code)

public int factorial (int n) {

if (n == 0) //BASE CASE:  n = 0:  0! = 1

return 1;

else //Recursive Case: n! = n x (n-1)!

return n * factorial(n-1);

}

16



Recursive Example: Factorial (Convert To Code)

public int factorial (int n) {

if (n <= 0) //BASE CASE:  n = 0 → 0! = 1 

return 1;

else //Recursive Case: n! = n x (n-1)!

return n * factorial(n-1);

}

• What if someone tries “-1”?? 
Recursion can be tricky! need to stop at a base case!

17



Trace execution: Recursive Factorial (for n=5)

return 5 * factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

return 1 

18



Why Do Recursive Methods Work?

• Activation Records on the Run-time Stack are the key:

 Each time you call a function (any function) you get a new activation record

 Each activation record contains a copy of all local variables and parameters for 
that invocation

 The activation record remains on the stack until the function returns, then it is 
destroyed

• Try yourself:  use your IDE’s debugger and put a breakpoint in the recursive 

algorithm.  Look at the call-stack

19



Factorial Example, n=4 (Run-time stack)

• New area of memory set aside for function (“fact”) and its local variables

• Example showing the run-time stack with activation records 

• Begin by calling the method, passing in the value Num=4

20

Num=4

MAIN fact(4)→



21

Num=4
MAIN fact(4)→

Num=4
4*fact(3)→

21



Num=4
MAIN fact(4)→

Num=4
4*fact(3)→

Num=3
3*fact(2)→

22



Num=4
MAIN fact(4)→

Num=4
4*fact(3)→

Num=3
3*fact(2)→

Num=2
2*fact(1)→

23



24

Num=4
MAIN fact(4)→

Num=4
4*fact(3)→

Num=3
3*fact(2)→

Num=2
2*fact(1)→

Num=1
1*fact(0)→

24



25

Num=4
MAIN fact(4)→

Num=4
4*fact(3)→

Num=3
3*fact(2)→

Num=2
2*fact(1)→

Num=1
1*fact(0)→

Num=0
return 1

25



26

Num=4
MAIN fact(4)→

Num=4
4*fact(3)→

Num=3
3*fact(2)→

Num=2
2*fact(1)→

Num=1
1*fact(0)→ 1

Num=0
return 1

1
Note: Activation 

records will be 

popped off the stack 

(once the method 

returns) – it is just 

not shown here in 

this example (so you 

can see how it all 

works)

*pop!*

26



27

Num=4
MAIN fact(4)→

Num=4
4*fact(3)→

Num=3
3*fact(2)→

Num=2
2*fact(1)→ 2

Num=1
1*fact(0)→

Num=0
return 1

1

Note: Activation 

records will be 

popped off the stack 

(once the method 

returns) – it is just 

not shown here in 

this example (so you 

can see how it all 

works)

*pop!*

*pop!*

27



28

Num=4
MAIN fact(4)→

Num=4
4*fact(3)→

Num=3
3*fact(2)→ 6

Num=2
2*fact(1)→

Num=1
1*fact(0)→

Num=0
return 1

2

Note: Activation 

records will be 

popped off the stack 

(once the method 

returns) – it is just 

not shown here in 

this example (so you 

can see how it all 

works)

*pop!*

*pop!*

*pop!*

28



29

Num=4
MAIN fact(4)→

Num=4
4*fact(3)→ 24

Num=3
3*fact(2)→

Num=2
2*fact(1)→

Num=1
1*fact(0)→

Num=0
return 1

6

Note: Activation 

records will be 

popped off the stack 

(once the method 

returns) – it is just 

not shown here in 

this example (so you 

can see how it all 

works)

*pop!*

*pop!*

*pop!*

*pop!*

29



30

Num=4
MAIN fact(4)→ 24

Num=4
4*fact(3)→

Num=3
3*fact(2)→

Num=2
2*fact(1)→

Num=1
1*fact(0)→

Num=0
return 1

24

Note: Activation 

records will be 

popped off the stack 

(once the method 

returns) – it is just 

not shown here in 

this example (so you 

can see how it all 

works)

*pop!*

*pop!*

*pop!*

*pop!*

*pop!*

30



Num=4
MAIN fact(4)→ 24

At the end the stack 

has popped off all 

activation records, 

and execution 

returns to who called 

the fact() method →

Main

31



Recursion vs. Iteration

32

Build solution from top down Build solution from bottom up
32



Recursion vs. Iteration

33

Build solution from top down Build solution from bottom up

if stms, 

no loops

start at 

n and go 

down

start at 1 

and go up to n

for loop

recursio

n: method 

calls itself

accumulating value

base case(s) before 

recursive call(s)

33



Broken Recursive Factorial 
{incorrect code: do NOT use/copy!}

public static int Brokenfactorial(int n){
int x = Brokenfactorial(n-1);
if (n <= 0)

return 1;
else 

return n * x;
}

• What’s wrong here?  

 Trace calls “by hand”

34



Broken Recursive Factorial 
{incorrect code: don’t use/copy!}

public static int Brokenfactorial(int n){
int x = Brokenfactorial(n-1);
if (n <= 0)

return 1;
else 

return n * x;
}

• What’s wrong here?  Trace calls “by hand”

 BrFact(2) -> BrFact(1) -> BrFact(0) -> BrFact(-1) -> BrFact(-2) -> …

 Problem:  we do the recursive call first before checking for the base case

 Never stops!  Like an infinite loop!

35

35



Recursive Design

• Recursive methods/functions require:

1. One or more (non-recursive) base cases that will cause the recursion to end

if (n <= 0) return 1;

2. One or more recursive cases that operate on smaller problems and get you 
closer to the base case

return n * factorial(n-1);

• Note: The base case(s) should always be checked before the recursive call(s)

36



Summary
•

 Base case: The case for which the solution can be stated non-recursively

 Recursive case: The case for which the solution is expressed in terms of a smaller 
version of itself

•

 Always put the base case first! (If more than one, put all of them first!)

 Base case should eventually happen given ANY input

 Recursive call should always get us closer to base case(s)

 Recursive solution may not always be the best (even though it might look nice!)37

37



More 
Recursive Examples
Seeing many examples will help! 

38



Iterative Example: Printing A List

• Here’s a method that prints a simple list iteratively:

public void printList(int[] list){

for(int i = 0; i < list.length; i++){

System.out.println(list[i] + " ");

}

}

• What about printing recursively?

Pseudocode:  

//As long as the list is not empty

//Print one item in list (current position; starting at zero)

//Then print the REST of the list recursively

39



Iterative vs Recursive Example: Printing A List

• Here’s a method that prints a simple list iteratively:

public void printList(int[] list){

for(int i = 0; i < list.length; i++){

System.out.println(list[i] + " ");

}

}

• Here’s a method that does the same thing, but recursively: 

public void printList(int[] list, int curIndex){

//Base case, if curIndex has run off end of list, do nothing

if(curIndex >= list.length) return;

//print one element and then recursively print the rest

System.out.print(list[curIndex] + " ");

printList(list, curIndex+1);  } 40



Recursive Example: Printing A List 
(using a helper method)

• Those who use our code might not know what curIndex is… And might not realize we have 

to set it at zero. So, we use a helper method!

41



Recursive Example: Binary Search [pseudocode]

• Let’s say we’re trying to find a particular page in a textbook using Binary Search:

find(page_number, book) {

flip to middle;

if page == page_number

return found;

if page_number is before page

return find(page_number, first half); // search 1st half

if page_number is after page

return find(page_number, second half); // search 2nd half

}

42



Recursive Example: Binary Search [pseudocode]

• More general Binary Search algorithm (pseudocode) 

public static int binarySearch(int[] list, int value) {

return binSearch(list, target, 0, list.length -1); //start: entire list is valid

}

private static int binSearch(int[] list, int first, int last, int target) {

//Base Case: if no where left to look (if low > high) return (-1)

//Calculate mid (an int)

//Print mid – the item that is being compared

//if mid is equal to target, return mid

//else if mid is less than the target,  first = mid + 1 (target in top half)

//else (mid is greater than the target), last = mid – 1 (target in bottom half)

//return [a recursive call to binSearch, passing values list, first, last, target]

}

43



Recursive Example: Binary Search
• This Binary Search algorithm has an int return type. What does the returned int represent? 

It could also be boolean. How would you change it?  [Hint: not many things will change.]

44



Recursive Example: Palindrome

• The word palindrome is derived from the Greek , meaning running back 

again (palín = AGAIN + drom–, drameîn = RUN)

• A word that is a palindrome can be read the same in both directions. Some simple 

examples are:

RACECAR   LEVEL   CIVIC   DEED

• An empty string or a single character is a palindrome. Larger words: From out to in, 

characters must match (see next slide)

45

OVERALL IDEA:
- Test first and last character only

- If they match AND
- Everything inside is also a 

palindrome, then TRUE!



Recursive Example: Palindrome

• Let’s assume the method is called isPalindrome()

• This will test to see if a given string is a palindrome

46



Recursive Example: Palindrome 
(using a helper method)

47



Recursive Example: Palindrome [Another Solution]

public static boolean palindrome (String s) { 
if (s.length() == 0  ||  s.length() == 1) // base cases, length is 0 or 1

return true; // an empty string or a single character is a Palindrome

if (s.charAt(0) == s.charAt(s.length()-1)) { // if first == last character
// Uncomment the next TWO lines to see recursive palindrome() in action!
System.out.print(s.charAt(0) + " and " + s.charAt(s.length()-1) + " match! ");
System.out.println("Trying: " + s.substring(1, s.length()-1));
// recursive call: call palindrome on the rest of the string:
return palindrome(s.substring(1, s.length()-1)); 
// Note: if string length = 5, s.substring goes from indices 1 --> 3
//       i.e. up to, but NOT including, the second parameter (5-1=4)
//       (New string sent in recursive call is old string with first and
//       last characters removed)

}
return false; // If the first and last characters don’t match, return false

} 48



Other Recursive Examples

• Towers of Hanoi  

• Euclid’s Algorithm

• Fractals

• General activities like

 Is string a Palindrome?

 Reverse a String

 …
49

49



Towers of Hanoi

• A game that is old and famous!

• The objective is to transfer entire tower A to the peg B, moving only one disk at a time and 

never moving a larger one onto a smaller one

 The algorithm to transfer n disks from A to B in general: We first transfer n - 1 smallest 
disks to peg C, then move the largest one to the peg B and finally transfer the n - 1 
smallest back onto largest (peg B)

 The number of necessary moves to transfer n disks can be found by 𝑇 𝑛 = 2𝑛 − 1

50



Euclid’s Algorithm

• Calculating the greatest common divisor (gcd) of two positive integers is the largest integer 

that divides evenly into both of them

 E.g. greatest common divisor of 102 and 68 is 34 since both 102 and 68 are multiples of 
34, but no integer larger than 34 divides evenly into 102 and 68

 Logic: If p > q, the gcd of p and q is the same as the gcd of  
q and p % q  (where  % is the remainder operator)

 Stop recursion once q becomes zero; at which point return p

51


