
CS 2100: Data Structures & Algorithms 1

Hello World; Primitive Data Types;

Using Simple Objects

Dr. Nada Basit //

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Reminder of my Contact Information

• Dr. Nada Basit

 Office: rice Hall 405

 OH: Mon (1:15-2:15pm) and Tue (11:30-1:00pm) on Zoom

 bas i t@v i rg in ia . ed u
Best way to get in touch with me!
(Always include “CS 2100” in email subject line)

Prof. Basit’s

Office Hours Challenge!

3

mailto:basit@virginia.edu

Introduction to Java

4

A Little About Java

• Java is a powerful and popular programming language

• It’s broadly used because it is:

 Portable

 Write once, run anywhere…

 Desktop software

 Android apps

 Enterprise systems

 Safe

 Based on C syntax, common C issues addressed by the compiler

 Object-Oriented (as opposed to procedural)

5

A Little About Java

• Java is Object-Oriented

 Different paradigm for programming

 Everything is an “object”

 Objects may contain other objects

 Objects have a type of class
(defines what you can ask of the object)

6

A Little About Java

• Java is statically typed

 All variables must be declared before they are used

 Must provide a type for all variables

 int, long, float, double, String, Cat, …

 For example:
type followed by the variable name, such as:

int numOfPages = 312;

• Java is strongly typed

 Strongly typed languages force the types stored in variables to be what is expected

 A variable will not automatically be converted from one type to another
7

Java: Some (naming) Conventions

Example

• Case sensitive: unicorn != Unicorn

• Classes are TitleCase: MyFirstClass

• Variables are camelCase: rectangleWidth

• Constants: variables whose value is not permitted to change:

 Coding convention: ALL CAPS

 Use “final” keyword to indicate a constant

 Example: final int CAR_NUM_WHEELS = 4;

• Comments: use // instead of #

// Java compiler ignores this line!

8

A Little About How Java Works

• Java and Javac

• Javac is the Java Compiler

• You write: MyProgram.java
Compiler: MyProgram.class

• Java reads and executes .class files (not human-readable)

• Your file, MyProgram.java, must contain a class name MyProgram

• If your file does not contain a “main” method, it will not do anything…!

 You do not *have* to have a main method in your files unless you want it to do
something!

• ☺
9

Variable

• A variable is simply a name associated with a specific object or primitive data

RAM:

• A name associated with a reserved area allocated in memory

• Has a type – Java is statically typed (variables declared before they’re used)

 Can be primitive or reference (more on this later)

int num = 50;

50

10

Static (no not that kind…)

• What does static mean?

 Anything static is accessible without an object of the class

 (Accessed / “called” directly)

• The main method is needed to run things in your program, and it is a static method!

public static void main (String[] args) { …

11

Hello World in Java

This is a simple yet complete Java program. It does one thing: Prints “Hello World!”

Output:

Hello World!

import java.io.*;

public class HelloWorld {
public static void main (String[] args) {

System.out.println("Hello World!");
}

}

12

Hello World in Java (with Comments)

/* Below is an import statement
* it is used if you want to use code from other packages
*/

/* Java.io.* is all of Java's input/output stuff */
import java.io.*;

public class HelloWorld { // Class declaration (common single-line comment)
/**
* The main method of the program.
* This is a Java doc comment, note the " /** "
* @param args - variable for the input array of Strings
*/

public static void main (String[] args) {
/* This is how you print to the console */
System.out.println("Hello World!");

}
}

(This is a multi-

line comment,

note the " /* ")

What is
System.out.println() ???

13

Notes on System.out.println();

import java.io.*;

public class HelloWorld {
public static void main (String[] args) {

/* if you use println, Java puts a new line at the end */
System.out.println("Hello");

/* And starts the next output on a new line */
System.out.println("There.");

/* If you use just print(), no newline after printing */
System.out.print("How are "); // remember to add a space!
System.out.print("you?");

}
}

Remember, if you write a

program in main but have

no output statements then

you will see no output in

the console. It doesn’t

mean nothing happened!

Output:

Hello
There.
How are you? 14

Data Types & Objects

15

Java Data Types (primitive and non-primitive)

Reference Types and
String (the strange one!)

Eight (8)
Primitive Data
Types in Java 16

Data Types

• Data type determines:

 What kind of information the variable holds

 What operations can you do on that information?

17

 Boolean

 True, False

→AND, OR, NOT…

Does “multiply” make

sense? NO!

 Integer

 (+/-) whole numbers, zero

→Add, subtract, divide, multiply…

Does “NOT” make sense? NO!

Primitive Data Types

/* What you see below is ALL of Java's primitive types */

/* various types of integers */

byte var1 = 10; //1 byte [-128, 127]

short var2 = 12; //2 bytes [-32768, 32767]

int var3 = 90; //4 bytes [-2^31, 2^31 - 1]

long var4 = 14; //8 bytes [-2^63, 2^63 - 1]

/* various floating point types */

float fp1 = 1.34f; //4 byte IEEE 754 number

double fp2 = 711.2; //8 byte IEEE 754 number

/* other */

boolean b = true; //can have values true and false

char c = 'd’; //2 bytes, stores a single character

Numerical range shown
[lowerbound, upperbound]

18

Note: lower case
“true” and “false”

var1

Primitive Types: (“non-reference types”)
int x = 4;
int y = x;

Actual values are stored in memory.

Primitive Data Types

MEMORY

1000
4  x

2000
4  y

/* Strings in Java are objects */

String s1 = "Hi There";

/* Many other objects exist, here's one example */

/* Note new variables use new keyword to create */

// *** Random Example - example of reference type

Random randomGenerator = new Random(); // using key-word new

int randomInt = randomGenerator.nextInt(25); // Random number 0-24 (calling method nextInt())

// .nextInt(n) means generating a random number between 0 (inclusive) and n
(exclusive).

System.out.println(randomInt);

System.out.println("---------");

Objects: “Random” example

nextInt() method exists in

the Random class:
java.util.Random

Output: (one run)

14
--------- 20

In this file we will import

java.util.Random

Java provides a random number

generator

Some Notes on Objects

• All other variables in Java are Objects

 Object data allocated in memory, variable name is a reference to it (more later)

 Objects contain fields and methods (more coming soon)

 You can develop your own Objects (aaaagain, more on this soon!)

 The Java API can tell you all of the objects Java has built in (very useful!)

 https://docs.oracle.com/javase/10/docs/api/overview-summary.html#JavaSE

21

https://docs.oracle.com/javase/10/docs/api/overview-summary.html#JavaSE

Brief: Primitive vs. Reference Data Types

• Primitive data types (built into Java)

 “Literal” values, refers to literal value on stack

 A “box” or chunk of memory holding the value itself

 May be compared with double equal sign, a == b

• Reference types (defined from classes)

 The “object” refers to the chunk of memory that holds the data

 The variable “points to” the object in memory

 Create new chunks (on heap) with new keyword

 Calls a constructor for that class

 Must be compared with special .equals() method. Why?

50

Declaring Variables

• Declaring variables is an assignment statement

 Copy the right side to the left side

 int x = 4;

 Create space for an integer, name it ‘x’, and put the number 4 in that space

 Primitive variables create space on the stack (at compile time)

float radius = 1.246

 Reference variables use space on the heap (at run time)

Cat freckles = new Cat(“Mr. Freckles”);

Objects: “Scanner” example
import java.util.Scanner;

public class InputExample {

public static void main(String args[]) {

System.out.println("Enter two numbers: ");

Scanner in = new Scanner(System.in);

int x1 = in.nextInt(); // reading in 1st number entered by user

int x2 = in.nextInt(); // reading in 2nd number entered by user

if(x1 > x2) System.out.println("First one is bigger!");

else if(x2 > x1) System.out.println("Second is bigger!");

else System.out.println("They are the same!");

/* Scanner also contains nextFloat(), nextLine(), etc. for other types */

}

}
24

Output: (entering #s in)

Enter two numbers:
24 66
Second is bigger!

Java provides a set of object types

for reading input from the user

Methods

• nextInt() (see code snippet below) is called a method

 Like a function, but operates on a specific instance of that type

 In this case, get the nextInt() specifically from the object ‘in’

 How do you know what methods are available?

 See the Java API !!

• More methods coming soon!

int x1 = in.nextInt(); // From the previous slide

25

Reminder… Java is Strongly Typed

• Variables in Python are NOT strongly typed. I can reassign a double to a variable that was a

String:

x = "hello there"

x = 5.2

• In Java, most of these are invalid:

int x = 5.23; //Error: cannot convert from double to int

String s1 = 9; //Error: cannot convert from int to String

double d1 = 5.2 //This one looks fine

d1 = 'e’ //Error: cannot convert from char to double

26

Primitive (numeric) Data Type ranking (High→Low)

• double, float, long, int, short, byte

HIGH LOW

--------- need to cast --------→

---------- no casting ---------

27

Casting (conversion between types)

// When converting Higher --> Low, need to cast the type

// double is a higher ranking than int

double d = 208.4;

int i = 2;

//int res = d / i; // error - Java won't automatically cast (High -> Low)

[uncomment this line to see error]

double res = d / i; // now this is OK

System.out.println(res); // OUTPUT: 104.2

int res2 = (int) (d / i); // Need to cast due to information loss

System.out.println(res2); // OUTPUT: 104

System.out.println("----------------------");

String s1 = (String)9; // Error cannot cast from int into to String

// Sometimes Java does not know how to force the conversion

28

Reminder of ranking [high to low]:
double, float, long, int, short, byte

Reminders

Syllabus Quiz

• Mandatory! Take by Jan. 28 @ 11:59pm.
Must get 100% to stay in the course! May
take it as many times as needed. Take it
early! (Located on Collab)

Regrades

• Request within 7 days for hand-graded
assignments

Academic Integrity

• Collaboration: discuss within your
cohort but do your own work; single
source at a time; ability to explain

Deadlines are at 11:59pm ET!
29

Quick & Fun Survey Questions
Got any Toggle Questions you would like me to ask the

class? If so, send me email and I’ll ask in class next time! 30

Be an Active Participant in
Your Learning!

Be Curious!
Ask Questions!

31

