
CS 2100: Data Structures & Algorithms 1

Big-Oh Analysis (Pt. 2)
{Growth Rates and Examples}

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Announcements

• Prof. Floryan and I (along with other CS professors) are attending the 53rd ACM
Technical Symposium on Computer Science Education

 This conference starts on Wednesday, March 2 and ends on Saturday, March 5, 2022.

• Therefore, lectures for Wednesday (today) and Friday will be recorded

 Wednesday: continuation of Monday’s lecture plus examples [Basit]

 Friday: finishing off and clarifying Asymptotic Complexity material, plus Amortized
analysis [Floryan]

• Students from both sections will watch all posted videos for this week (by Basit and Floryan)

• Therefore, no class Wednesday or Friday of this week!

• Next week is Spring Break ☺ – Have a great Spring Break!

2

Comparison of Growth Rates (“zoomed out”)

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n^2

f(n) = n^3

f(n) = 2^n

(Same graph,

zoomed out –

different scale)

3

Order Class Details - Summary
[Big-Oh; Big-Theta; Big-Omega]

O(n2): upper-bound on how inefficient an algorithm can be

 Set of all functions that are at most n2

 Functions that grow the same rate or slower than n2

 As efficient as n2, but no worse

Θ(n2): tight-bound on how inefficient an algorithm can be

 Set of all functions that are exactly n2

 As efficient as n2, no worse and no better

Ω(n2): lower-bound on how inefficient an algorithm can be

 Set of all functions that are at least n2

 As efficient as n2, but no better
4

Order Class Details - Summary
[Big-Oh; Big-Theta; Big-Omega]

O(n2): upper-bound on how inefficient an algorithm can be

 Set of all functions that are at most n2

 Functions that grow the same rate or slower than n2

 As efficient as n2, but no worse

Θ(n2): tight-bound on how inefficient an algorithm can be

 Set of all functions that are exactly n2

 As efficient as n2, no worse and no better

Ω(n2): lower-bound on how inefficient an algorithm can be

 Set of all functions that are at least n2

 As efficient as n2, but no better
5

•

• For large inputs, are these functions really different?

 f(n) = 100n2 + 50n + 7

 f(n) = 20n2 + 7n + 2

They are both quadratic functions

• a “label” for all functions with the same highest-order term

 O(n2) : Big-Oh notation [typically used more often]

 Θ(n2) : Big-Theta notation

[Reminder] Time Complexity

6

Highest-order Term

• If a function that describes the growth of an algorithm has several terms, its order of

growth is determined by the fastest growing term.

• Smaller terms have some significance for small amounts of data. Constants are also

eventually ignored

• As n gets large, the highest order term will dominate ()

f(n) = 100n2 + 50n + 7 ➔ Simply O(n2)

7

Common Order Classes / Growth Rates

• Order classes group “equivalently” efficient algorithms

O(1) – constant time! Input size doesn’t matter

O(lg n) – logarithmic time. Very efficient. E.g. binary search (after sorting)

O(n) – linear time E.g. linear search

O(n lg n) – log-linear time. E.g. best sorting algorithms

O(n2) – quadratic time. E.g. poorer sorting algorithms

O(n3) – cubic time. E.g. matrix multiply

….

O(2n) – exponential time. Many important problems, often about optimization

O(n!) – factorial time. E.g. all permutations of a string

8

Common
Growth
Rates

A Note About Logs

• The difference between log10(n) and log2(n) is always a constant

 Specifically, about 3.322

 Since we don't care about constants in these analyses, we'll ignore the log base

• Most things in computer science are log base 2 anyway...

10

Time Complexity: Order Classes Details

• What does the label mean? O(n2)

 Set of all functions that grow at the same rate as n2

or more slowly

 i.e. as efficient as any “n2” or more efficient, but no worse

 An upper-bound on how inefficient an algorithm can be

• Usage: We might say: Algorithm A is O(n2)

 Means: Algorithm A’s efficiency grows like a quadratic algorithm or grows more
slowly (as good or better)

• What about that other label, e.g., Θ(n2)?

 Set of all functions that grow at exactly the same rate

 A more precise bound – as efficient as n2, no worse and no better

11

Does Order Class Matter?

• For small inputs…

 No

• For many real problems (with usually large inputs)…

 Yes!

12

Big-O is a Good Estimate

• For large values of N, Big-O is a good approximation for the running time of a particular

algorithm. The table below shows the observed times and the estimated times

13

Asymptotically Superior Algorithm

• If we choose an asymptotically superior algorithm to solve a problem, we

will not know exactly how much time is required, but we know that as the

problem size increases there will always be a point beyond which the lower-

order method takes less time than the higher-order algorithm

• Once the problem size becomes sufficiently large, the asymptotically superior

algorithm always executes more quickly

• The next figure demonstrates this behavior for algorithms of order O(n),

O(n2), and O(n3)

14

Asymptotically Superior Algorithm

• For small problems, the choice

of algorithms is not critical – in

fact, the O(n2) or O(n3) may

even be superior!

• However, as n grows large

(larger than 2.0 in this case) the

O(n) algorithm always has a

superior running time and

improves as n increases

MSD Figure 5.1: Graphical comparison of complexity
measures O(n), O(n2), and O(n3)

15

Summary

We need an accurate way to measure algorithm efficiency, which is independent of
hardware or external to the program factors

Time complexity of an algorithm quantifies the amount of time taken by an
algorithm to run as a function of the size of the input

Asymptotic analysis (e.g.,using Big-O) is the fundamental technique for describing
the efficiency properties of algorithms (time complexity)

Big-O notation describes the asymptotic behavior (upper bound) of algorithms on
large problems

It is the fundamental technique for describing the efficiency properties of algorithms

Summary : Common Complexity Classes

O(1) – constant time

O(lg n) – logarithmic time

O(n) – linear time

O(n lg n) – log-linear time

O(n2) – quadratic time

O(n3) – cubic time

….

O(2n) – exponential time

17
17

Examples of
Algorithms in Various
Complexity Classes

18

O(1) – Constant time

• The algorithm requires a fixed number of steps regardless of the size of the

task (input)

Examples

• Push and Pop operations for a stack data structure (size n)

• Insert and Remove operations for a queue

• Conditional statement for a loop

• Variable declarations

• Assignment statements

19

O(log n) – Logarithmic time

• Operations involving dividing the search space in half each time (taking a list

of items, cutting it in half repeatedly until there's only one item left)

Examples

• Binary search of a sorted list of n elements

• Insert and Find operations for binary search tree (BST) with n nodes

20

O(n) – Linear time

• The number of steps increase in proportion to the size of the task (input)

Examples

• Traversal of a list or an array… (size n)

• Sequential search in an unsorted list of elements (size n)

• Finding the max or min element in a list

21

O(n lg n) – Log-linear time

• Typically describing the behavior of more advanced sorting algorithms

Examples

• Some of the best sorting algorithms

 Quicksort

 Mergesort

22

O(n2) – Quadratic time

• For a task of size 10, the number of operations will be 100

• For a task of size 100, the number of operations will be 100x100 and so on…

Examples

• Some poorer sorting algorithms

 Selection sort of n elements, Insertion sort…

• Finding duplicates in an unsorted list of size n

23

O(an) (a>1) – Exponential time

• Many interesting problems fall into this category…O(2n)

Examples

• Recursive Fibonacci implementation

• Towers of Hanoi

• Generating all permutations of n symbols

• … many more!

24

Calculating Running Time
So, what do we look for in the code to help us “count” and calculate running

time?

Here are some general rules and tips with some additional examples

25

General Rules for
Running Time Calculations (Big-Oh)

• For loops

 The number of times the for loop runs times the total running time of the statements inside
the for loop

• Nested loops

 Analyze from inside to out

 Runtime of the statement * product of the sizes of the loops

• Consecutive statements

 Additive (remember that we remove constants!)

• if/else

 Time for the test plus the longer of the runtimes

26

How to Tell The Running Time…

• You need to imagine how long the algorithm would run given varying input sizes

 We will assume our input size is n

• You should ask yourself...

 How long will this algorithm take when n = 1?

 When n = 100?

 When n = 1,000,000,000?

• Recall that we always analyze the worst case!

27

Running Time: Linear

• Linear (Θ(n)) running time

• Means that we have to process each element, and there is one step (or a constant number of

steps) for each one

• Examples:

 Printing (or otherwise iterating through) a list

 Finding an element in an unsorted array or vector

 Finding an element in a sorted or unsorted linked list

 Doubling the size of a vector's underlying array

28

Running Time: Log-Linear

• Log-linear (Θ(n log n)) running time

• Typically occurs when you are going to take a linear number of steps, but each one takes

log n time

 Or log n steps, each one of which takes n time

• Examples:

 Fast sorts: merge sort and heap sort

 Quicksort, on a good day (but this is not guaranteed!)

 Inserting n elements into a data structure where each insert takes log n time

29

Running Time: Quadratic

• Quadratic (Θ(n2)) running time

• Occurs when, for each input, you have to search through the entire input again

 (among other ways it can occur)

• Examples:

 Slow sorts: insertion sort, bubble sort, selection sort

 Quicksort, on a bad day

 Doubly nested for loops (where each loop goes 1 to n)

30

Running Time: Exponential

• Exponential (Θ(2n)) running time

• Typically means you are going to try every possible solution, and there are 2n of them

• Examples (we have not seen any yet)

 Trying to crack a binary combination lock by trying every single possibility

 Traveling salesperson problem (we'll see that later this semester)

 Satisfiability of a Boolean expression

31

