
CS 2100: Data Structures & Algorithms 1

Big-Oh Analysis
{Orders of Growth}

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Announcements

• Lab tonight (Monday):

 Take a maximum of two (2) quizzes – on external testing site, linked to from Collab

 ONE (1) quiz from this week - Vectors (30 minutes)

 ONE (1) quiz from: Quiz 1, Quiz 2, or Quiz3 (retake; optional; another 30 minutes)

 Show up to lab on-time!

• Prof. Floryan and I (along with other CS professors) are attending a Computer Science
Education Conference (ACM SIGCSE) starting on Wednesday until Saturday.

 Lectures for Wednesday and Friday will be recorded and posted for you to watch

 Wednesday: continuation of today’s lecture plus examples [Basit]

 Friday: clarifying or finishing off material, plus Amortized analysis [Floryan]

 Students from both sections will watch all posted videos for this week

 Therefore, no class Wednesday or Friday of this week! – Have a great Spring Break!
3

Motivation/Goals

• Goal: Measure the quality of an algorithm or method in a data structure

 E.g., is find() in LinkedLists faster than find() in an Array?

 What about get(index n)?

4

Motivation/Goals

• Understand the nature of the performance of algorithms

• Understand how we measure performance

 Used to describe performance of various data structures

• Begin to see the role of algorithms in the study of Computer Science

5

Algorithms

• An algorithm is a detailed step-by-step method for solving a problem

• Computer algorithms, but other kinds too! [Such as?]

6

Algorithms

• An algorithm is a detailed step-by-step method for solving a problem

• Computer algorithms, but other kinds too! [Such as?]

• Properties of algorithms

– Steps are precisely stated

• No ambiguity

• Cannot be interpreted in more than one way

– Deterministic: behaves the same way (based on inputs, previous steps)

– Terminates: the end is clearly defined

– Other properties: correctness, generality, efficiency

7

Abstract Data Types

• : A logical relationship among data elements designed to support

specific data manipulation functions

 Concrete: defined as an implementation

 Examples: ArrayList, HashSet, trees, tables, stacks, queues

• : a of data items stored and a

that manipulate the data model

 Abstract: no implementation implied ()

 Examples: List, Set, … (think Java interfaces)

 A particular data structure implements an ADT and defines it is implemented

8

ADTs

• ADTs define operations and a given data structure implements them

 Think and design using ADTs, then code using data structures

 There may be more than one data structure that implements the ADT we need – so how do

we decide?

 Compare the advantages and disadvantages

 Efficiency / performance is often a major consideration

 Ex: ArrayList vs LinkedList

9

ADTs -
How to compare the efficiencies of implementations?

•

•

• So… how do we compare efficiency of implementations?

• Answer: We compare the algorithms that implement the operations

• E.g.:
the remove method of an ArrayList

vs.
the remove method of a LinkedList

10

How Do We Compare the Efficiency
of Implemented Algorithms?

Core question we would like to address today

11

Let’s Define Efficiency…

• The efficiency of an algorithm measures the amount

of resources consumed in solving a problem of size n

 CPU (time) usage, memory usage, disk usage,
network usage, …

• In general, the resource that interests us the most is

time

 That is, how fast an algorithm can solve a problem
of size n

 (We can use the same techniques to analyze the
consumption of other resources, such as memory
space)

Why Not Just Time Algorithms?

What do you think?

MacBook 2018 vs 4GHz Core i7

vs Rasberry Pi (ARM) vs Apple

M1 ???

Not a fair comparison!

(This is called BENCHMARKING,

and is useful in certain

circumstances.)

13

Considerations…

Algorithm A
(implementing task “X”)

• PC vs. MAC

• Python vs. Java

• Programmer 1 vs. Programmer 2

• Laptop vs. super computer

• MAC vs. MAC

• (Data) Input: 10 vs. Input: 100,000

• (Data) Input: 10,000 Sorted vs. Input: 10,000 Random

Algorithm B
(implementing task “X”)

14

Why Not Just Time Algorithms?

• We want a measure of work that gives us a direct measure of the of the
algorithm without introducing differences in:

 Computer hardware

 Programming language

 Programmer skills (in coding the algorithm)

 (Other implementation details)

 The – bits, # items in data structure, …

 The

 Best-case, worst-case, average

 E.g. searching a sorted vs. a randomized list

15

Measuring Performance

• We need a way to formulate general guidelines that allow us to state that,

• The time it takes to solve a problem is usually an increasing function of its size (n) –

the bigger the problem, the longer it takes to solve

• We need a formula that associates n, the problem size, with t, the processing time

required to obtain a solution

• This relationship can be expressed as: t = f(n)

16

Analysis of Algorithms

• Analysis of Algorithms: use mathematics as our tool for analyzing algorithm

performance

 Measure the algorithm itself, its nature

 Not its implementation or its execution

• We need something to !

 Cost or number of steps is a function of input size n:
e.g. for input size n, cost is f(n)

 Count all steps in an algorithm? (Hopefully avoid this!)

17

Some First Attempts

18

Some First Attempts

19

Some First Attempts

20

Counting Operations

• Strategy: choose one operation or section of code to count

 Total work is always roughly proportional to how often that part is done

• So, we’ll just count:

 An algorithm’s “basic operation,” or

 An algorithm’s “critical section”

21

Asymptotic Analysis
(Characterizing the performance of an algorithm)

• Algorithmic complexity is concerned with how fast or slow a

particular algorithm performs.

 How long will a program run on an input?

 How much space will it take?

 Is the problem solvable?

• An understanding of algorithmic complexity provides programmers

with insight into the efficiency of their code

 it’s only when n becomes large that

differences become apparent 22

 it’s only when n becomes large that differences become apparent

• A mathematical concept (i.e. on its own has nothing to do with code / CS but we use it in

CS). Describes the growth rate of something as a function

• E.g., n2, quadratic, grows faster than n, linear.

• “Asymptotic” – how do things change as the input size n gets larger? How scalable is the

algorithm (how slow will it be on large inputs?)

• Rule of thumb: the slower the asymptotic growth rate, the better

the algorithm

Asymptotic Analysis

23

Comparison of Growth Rates

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n^2

f(n) = n^3

f(n) = 2^n

24

Comparison of Growth Rates (“zoomed out”)

25

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n^2

f(n) = n^3

f(n) = 2^n

(Same graph,

zoomed out –

different scale)

25

•

• For large inputs, are these functions really different?

 f(n) = 100n2 + 50n + 7

 f(n) = 20n2 + 7n + 2

They are both quadratic functions

• a “label” for all functions with the same highest-order term

 O(n2) : Big-Oh notation [typically used more often]

 Θ(n2) : Big-Theta notation

Time Complexity

26

Time Complexity : Common order classes

27

Classifying Functions
by Their Asymptotic Growth Rates

• Asymptotic growth rate or asymptotic order

 Comparing and classifying functions that ignores constant factors and small inputs.

• The sets are big-omega, big-theta, and big-oh:

Ω(g): functions that grow at least as fast as g

 Θ(g): functions that grow at the same rate as g

 O(g): functions that grow no faster than g

28

Why Do We Care?

• Some data structures are faster than others

 Each data structure has some operations that are fast, and some that are slow

• We need a way to compare them

• This allows us to:

 Better choose the data structures that we will use

 Better design additional data structures

29

Input Sizes

• Your algorithm does not matter if you have 10 elements (small size)

 A bogosort will work just fine [http://en.wikipedia.org/wiki/Bogosort]

• Consider big input sizes:

 UVa's e-mail probably has about 100,000 e-mail addresses

 OpenStreetMap, for driving routes, has over 3.2 billion nodes and 5.1 million GPS
points (ref) (as of Feb 2016)

30

http://en.wikipedia.org/wiki/Bogosort
http://www.openstreetmap.org/
http://www.openstreetmap.org/stats/data_stats.html

Even for Smaller Input Sizes…

• All times are in ms (1/1000th of a second)

31

Assumptions

• We have measured the running time of our program with different input sizes, and that

result is encapsulated in some function f(n)

 n is the input size, and is always a positive integer

• We have some other function g that we want to compare our program to

• So, we will compare f(n) to g(n), such as:

 f(n) ∈ O(g(n))

 f(n) ∉ Ω(g(n))

32

Worst-Case Scenario

• We always analyze the worst-case run-time

 It makes no sense to analyze the best case, as that is rarely likely to happen

 And the average case (if you could even define what that is) may not be representative and
is not used in these analyses either

• It is often not until a worst-case scenario happens that ‘bad’ / ‘incorrect’ things happen

 So, we want to pay attention to how ‘bad’ our algorithms function at these times

• A more formal definition of worst case, should you be interested, can be found here

 (http://en.wikipedia.org/wiki/Worst_case)

33

http://en.wikipedia.org/wiki/Worst_case

The Sets O(G), Θ(G), Ω(G)

• Let f and g be functions from the non-negative integers into the positive real numbers

• For some real constant c > 0 and some non-negative integer constant n0

 O(g) is the set of functions f, such that:

 f(n) ≤ c * g(n) for all n ≥ n0 [no faster than g; an asymptotic upper bound]

 Ω(g) is the set of functions f, such that:

 f(n) ≥ c * g(n) for all n ≥ n0 [at least as fast as g; an asymptotic lower bound]

 Θ(g) = O(g) ∩ Ω(g)

 Θ(g) is the asymptotic order of g [at the same rate as g; an asymptotic tight bound]

 or the order of g

34

Asymptotic Bounds

• For the sets big-oh O(g), big-theta Θ(g), and big-omega Ω(g), remember these meanings:

 O(g): functions that grow no faster than g; an asymptotic upper bound [figure (b)]

 Ω(g): functions that grow at least as fast as g; an asymptotic lower bound [figure (c)]

 Θ(g): functions that grow at the same rate as g; an asymptotic tight bound [figure (a)]

35

Big-Oh Examples

• f(n) ∈ O(g(n)) means that there are positive constant c and some non-negative integer

constant n0 such that f(n) ≤ c*g(n) for all n ≥ n0

• Is n ∈ O(n2)?

 Yes c = 1, n0 = 2 works fine

• Is 10n ∈ O(n)?

 Yes c = 11, n0 = 2 works fine

• Is n2 ∈ O(n)?

 No! No matter what values for c and n0 we pick, n2 > c *n for big enough n

36

Greater than, not ≤

Given F ∈O(H) and G ∉O(H),
Which of These are True?

37

Lower Bound: Ω (Omega)

• f(n) ∈ Ω (g(n)) means:

 There are positive constants c and n0 such that f(n) ≥ c *g(n) for all n ≥ n0

 The difference from big-oh is the ≥ in big-omega versus ≤ in big-oh

• This is a lower bound

38

Θ Theta (“Order Of ”)

• Intuition: the set Θ(f) is the set of functions that grow as fast as f

• Definition: f(n) ∈ Θ(g(n)) if and only if both:

1. f(n) ∈ O (g(n)) -- upper bound

2. f(n) ∈ Ω (g(n)) -- lower bound

• Note that we do not have to pick the same c and n0 values for cases 1 and 2

• When we say, “f is order g” that means f(n) ∈ Θ (g(n))

39

Running time that is Θ(f(n)) for some function f(n)

40
Image from KhanAcademy.org

Bounded both above and below:

asymptotic tight bound

