CS 2100: Data Structures \& Algorithms 1

Big-Oh Analysis
\{Orders of Growth\}

Dr. Nada Basit// basit@virginia.edu
Spring 2022

Friendly Reminders

- Masks are required at all times during class (University Policy)
- If you forget your mask (or mask is lost/broken), I have a few available
- Just come up to me at the start of class and ask!
- No eating or drinking in the classroom, please
- Our lectures will be recorded (see Collab) - please allow $24-48$ hrs to post
- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©

Announcements

- Lab tonight (Monday):
- Take a maximum of two (2) quizzes - on external testing site, linked to from Collab
- ONE (1) quiz from this week - Vectors (30 minutes)
- ONE (1) quiz from: Quiz 1, Quiz 2, or Quiz3 (retake; optional; another 30 minutes)
- Show up to lab on-time!
- Prof. Floryan and I (along with other CS professors) are attending a Computer Science Education Conference (ACM SIGCSE) starting on Wednesday until Saturday.
- Lectures for Wednesday and Friday will be recorded and posted for you to watch
- Wednesday: continuation of today's lecture plus examples [Basit]
- Friday: clarifying or finishing off material, plus Amortized analysis [Floryan]
- Students from both sections will watch all posted videos for this week
- Therefore, no class Wednesday or Friday of this week! - Have a great Spring Break!

Motivation/Goals

- Goal: Measure the quality of an algorithm or method in a data structure
- E.g., is find() in LinkedLists faster than find() in an Array?
- What about get(index n)?

Motivation/Goals

- Understand the nature of the performance of algorithms
- Understand how we measure performance
- Used to describe performance of various data structures
- Begin to see the role of algorithms in the study of Computer Science

Algorithms

- An algorithm is a detailed step-by-step method for solving a problem
- Computer algorithms, but other kinds too! [Such as?]

Algorithms

- An algorithm is a detailed step-by-step method for solving a problem
- Computer algorithms, but other kinds too! [Such as?]
- Properties of algorithms
- Steps are precisely stated
- No ambiguity
- Cannot be interpreted in more than one way
- Deterministic: behaves the same way (based on inputs, previous steps)
- Terminates: the end is clearly defined
- Other properties: correctness, generality, efficiency

Abstract Data Types

- Data Structures: A logical relationship among data elements designed to support specific data manipulation functions
- Concrete: defined as an implementation
- Examples: ArrayList, HashSet, trees, tables, stacks, queues
- Abstract Data Types (ADT): a model of data items stored and a set of operations that manipulate the data model
- Abstract: no implementation implied (data abstraction)
- Examples: List, Set, ... (think Java interfaces)
- A particular data structure implements an ADT and defines how it is implemented

ADTs

- ADTs define operations and a given data structure implements them
- Think and design using ADTs, then code using data structures
- There may be more than one data structure that implements the ADT we need - so how do we decide?
- Compare the advantages and disadvantages
- Efficiency / performance is often a major consideration
- Ex: ArrayList vs LinkedList

0	1	2	3	4
23	3	17	9	42

ADTs -

How to compare the efficiencies of implementations?

- Example: ADT List can be implemented by an array, an ArrayList, a LinkedList, ...
- Example: ADT Priority Queue can be implemented by an array, an ArrayList, or a Binary Heap (base structure is a binary tree)
- So... how do we compare efficiency of implementations?
- Answer: We compare the algorithms that implement the operations
- E.g.:
the remove method of an ArrayList
vs.
the remove method of a LinkedList

How Do We Compare the Efficiency of Implemented Algorithms?
 Core question we would like to address today

What things are we comparing?
What do we mean by efficiency?

Let's Define Efficiency...

- The efficiency of an algorithm measures the amount of resources consumed in solving a problem of size \boldsymbol{n} - CPU (time) usage, memory usage, disk usage, network usage, ...
- In general, the resource that interests us the most is time
- That is, how fast an algorithm can solve a problem of size \boldsymbol{n}
- (We can use the same techniques to analyze the consumption of other resources, such as memory space)

Why Not Just Time Algorithms?

Considerations...

Algorithm A(implementing task "X")
Algorithm B
Algorithm B
(implementing task "X")

- PC vs. MAC
- Python vs. Java
- Programmer 1 vs. Programmer 2- Laptop vs. super computer
- MAC vs. MAC
- (Data) Input: 10 vs. Input: 100,000
- (Data) Input: 10,000 Sorted vs. Input: 10,000 Random

Why Not Just Time Algorithms?

- We want a measure of work that gives us a direct measure of the efficiency of the algorithm without introducing differences in:
- Computer hardware
- Programming language
- Programmer skills (in coding the algorithm)
- (Other implementation details)
- The size of the input - bits, \# items in data structure, ...
- The nature of the input
- Best-case, worst-case, average
- E.g. searching a sorted vs. a randomized list

Measuring Performance

- We need a way to formulate general guidelines that allow us to state that, for any arbitrary input, one method is likely to perform better than the other
- The time it takes to solve a problem is usually an increasing function of its size (n) the bigger the problem, the longer it takes to solve
- We need a formula that associates \boldsymbol{n}, the problem size, with \boldsymbol{t}, the processing time required to obtain a solution
- This relationship can be expressed as:

$$
t=f(n)
$$

Analysis of Algorithms

- Analysis of Algorithms: use mathematics as our tool for analyzing algorithm performance
- Measure the algorithm itself, its nature
- Not its implementation or its execution
- We need something to count!
- Cost or number of steps is a function of input size n : e.g. for input size n, cost is $\boldsymbol{f}(\boldsymbol{n})$
- Count all steps in an algorithm? (Hopefully avoid this!)

Some First Attempts

- High variability even with one algorithm / method

Some First Attempts

- attempt 2: Count the numbeach algorithm
- Good! But somer of lines of cónil speed, cache

Good! But some issues still

- Some operations much fas
deal miss using them a lot than others, maybe not a big deal unless using them a lot
- How do we account for loops? Rall and over.
- If data structure / input is small, 10 operations versus 8

Some First Attempts

attempt 2: Count the numbime each algorithm

- Not perfect, but very useful theoretical measure of an operation's efficiency
- Count the operations as a function of how big the input is.
- Example: find() in a Linked List. How many operations? Depends on size of the list!

Counting Operations

- Strategy: choose one operation or section of code to count
- Total work is always roughly proportional to how often that part is done
- So, we'll just count:
- An algorithm's "basic operation," or
- An algorithm's "critical section"

Asymptotic Analysis (Characterizing the performance of an algorithm)

- Algorithmic complexity is concerned with how fast or slow a particular algorithm performs.
- How long will a program run on an input?
- How much space will it take?
- Is the problem solvable?

- An understanding of algorithmic complexity provides programmers

Input (number) with insight into the efficiency of their code

- Asymptotic Analysis: an estimate of time as a function of the input size, n, as n gets large
- As n gets large: it's only when n becomes large that differences become apparent

Asymptotic Analysis

- Asymptotic Analysis: an estimate of time as a function of the input size, n, as n gets large
- As n gets large: it's only when n becomes large that differences become apparent
- The asymptotic behavior/growth rate of a function $f(n)$ refers to the growth of $f(n)$ as n gets large
- A mathematical concept (i.e. on its own has nothing to do with code / CS but we use it in CS). Describes the growth rate of something as a function
- E.g., \mathbf{n}^{2}, quadratic, grows faster than \mathbf{n}, linear.
- "Asymptotic" - how do things change as the input size \boldsymbol{n} gets larger? How scalable is the algorithm (how slow will it be on large inputs?)
- Rule of thumb: the slower the asymptotic growth rate, the better the algorithm

Comparison of Growth Rates

\star Comparison of Growth Rates ("zoomed out")

Time Complexity

- Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity
- For large inputs, are these functions really different?
- $f(n)=100 n^{2}+50 n+7$
- $\mathrm{f}(\mathrm{n})=20 \mathrm{n}^{2}+7 \mathrm{n}+2$

They are both quadratic functions

- Order class: a "label" for all functions with the same highest-order term
- O(n $\left.\mathbf{n}^{2}\right)$: Big-Oh notation [typically used more often]
- $\Theta\left(\mathbf{n}^{2}\right)$: Big-Theta notation

Time Complexity : Common order classes

Classifying Functions by Their Asymptotic Growth Rates

- Asymptotic growth rate or asymptotic order
- Comparing and classifying functions that ignores constant factors and small inputs.
- The sets are big-omega, big-theta, and big-oh:
- $\boldsymbol{\Omega}(\mathbf{g})$: functions that grow at least as fast as \mathbf{g}
- $\boldsymbol{\Theta}(\mathbf{g})$: functions that grow at the same rate as \mathbf{g}
- $\mathbf{O}(\mathbf{g})$: functions that grow no faster than g

Why Do We Care?

- Some data structures are faster than others
- Each data structure has some operations that are fast, and some that are slow
- We need a way to compare them
- This allows us to:
- Better choose the data structures that we will use
- Better design additional data structures

Input Sizes

- Your algorithm does not matter if you have 10 elements (small size)
- A bogosort will work just fine [http://en.wikipedia.org/wiki/Bogosort]
- Consider big input sizes:
- UVa's e-mail probably has about 100,000 e-mail addresses
- OpenStreetMap, for driving routes, has over $\mathbf{3 . 2}$ billion nodes and $\mathbf{5 . 1}$ million GPS points (ref) (as of Feb 2016)

Even for Smaller Input Sizes...

- All times are in ms Data (1/1000 Structure	Total a second time	Insert time	Search time	Delete time
Vector	17,311	30	12,620	4,661
ArrayList	17,281	28	12,609	4,644
LinkedList	24,255	54	17,934	6,267
HashSet	122	103	9	10

Assumptions

- We have measured the running time of our program with different input sizes, and that result is encapsulated in some function $f(n)$
- \boldsymbol{n} is the input size, and is always a positive integer
- We have some other function \boldsymbol{g} that we want to compare our program to
- So, we will compare $f(n)$ to $g(n)$, such as:
- $f(n) \in O(g(n))$
- $f(n) \notin \Omega(g(n))$

Worst-Case Scenario

- We always analyze the worst-case run-time
- It makes no sense to analyze the best case, as that is rarely likely to happen
- And the average case (if you could even define what that is) may not be representative and is not used in these analyses either
- It is often not until a worst-case scenario happens that 'bad' / 'incorrect' things happen
- So, we want to pay attention to how 'bad' our algorithms function at these times
- A more formal definition of worst case, should you be interested, can be found here
- (http://en.wikipedia.org/wiki/Worst_case)

The Sets $\mathrm{O}(\mathrm{G}), \Theta(\mathrm{G}), \Omega(\mathrm{G})$

- Let f and g be functions from the non-negative integers into the positive real numbers
- For some real constant $\mathrm{c}>0$ and some non-negative integer constant n_{0}
- $\mathrm{O}(g)$ is the set of functions f, such that:
- $f(n) \leq \mathrm{c} * g(n)$ for all $n \geq n_{0}$
[no faster than g ; an asymptotic upper bound]
- $\Omega(g)$ is the set of functions f, such that:
- $f(n) \geq \mathrm{c} * g(n)$ for all $n \geq n_{0}$
- $\Theta(g)=\mathrm{O}(g) \cap \Omega(g)$
- $\Theta(g)$ is the asymptotic order of g
- or the order of g
[at least as fast as \mathbf{g}; an asymptotic lower bound]
[at the same rate as \mathbf{g}; an asymptotic tight bound]

Asymptotic Bounds

- For the sets big-oh $\mathrm{O}(\mathrm{g})$, big-theta $\Theta(\mathrm{g})$, and big-omega $\Omega(\mathrm{g})$, remember these meanings:
- $\mathrm{O}(g)$: functions that grow no faster than g ; an asymptotic upper bound [figure (b)]
- $\Omega(g)$: functions that grow at least as fast as \mathbf{g}; an asymptotic lower bound [figure (c)]
- $\Theta(g)$: functions that grow at the same rate as \mathbf{g}; an asymptotic tight bound [figure (a)]

(a)

(b)

(c)

Big-Oh Examples

- $f(n) \in \mathrm{O}(g(n))$ means that there are positive constant c and some non-negative integer constant n_{0} such that $f(n) \leq \mathbb{c}^{*} g(n)$ for all $n \geq n_{0}$
- Is $n \in \mathrm{O}\left(\mathrm{n}^{2}\right)$?
- Yes $\quad \mathrm{c}=1, n_{0}=2$ works fine
- Is $10 n \in O(n)$?
- Yes $\quad \mathfrak{c}=11, n_{0}=2$ works fine
- Is $n^{2} \in \mathrm{O}(\mathrm{n})$?

Greater than, not \leq

- No! No matter what values for c and n_{0} we pick, $n^{2}>\mathrm{c} * n$ for big enough n

Given $F \in O(H)$ and $G \notin O(H)$, Which of These are True?

1. For all positive integers $m, f(m)<g(m)$.
2. For some positive integer $m, f(m)<g(m)$.
3. For some positive integer m_{0}, and all positive integers $m>m_{0}$, $f(m)<g(m)$.
4. 1 and 2
5.2 and 3
6.1 and 3

Lower Bound: Ω (Omega)

- $f(n) \in \Omega(g(n))$ means:
- There are positive constants c and n_{0} such that $f(n) \geq \mathrm{c} * g(n)$ for all $n \geq n_{0}$
- The difference from big-oh is the \geq in big-omega versus \leq in big-oh
- This is a lower bound

Θ Theta ("Order Of")

- Intuition: the set $\Theta(f)$ is the set of functions that grow as fast as f
- Definition: $f(n) \in \Theta(g(n))$ if and only if both:

$$
\begin{aligned}
& \text { 1. } f(\mathrm{n}) \in \mathrm{O}(g(n)) \text {-- upper bound } \\
& \text { 2. } f(\mathrm{n}) \in \Omega(g(n)) \text {-- lower bound }
\end{aligned}
$$

- Note that we do not have to pick the same c and n_{0} values for cases 1 and 2
- When we say, " f is order g " that means $f(\mathrm{n}) \in \Theta(\mathrm{g}(\mathrm{n}))$

Running time that is $\Theta(f(n))$ for some function $f(n)$

We are not restricted to just n in big- Θ notation. We can use any function, such as $n^{2}, n \log _{2} n$, or any other function of n. Here's how to think of a running time that is $\Theta(f(n))$ for some function $f(n)$:

Bounded both above and below: asymptotic tight bound

Once n gets large enough, the running time is between $k_{1} \cdot f(n)$ and $k_{2} \cdot f(n)$.

