
CS 2100: Data Structures & Algorithms 1

Introduction to Queues

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Stacks and Queues

3

Abstraction: Stacks and Queues

• We can think of a stack or a queue as an abstraction

 We can implement them in different ways

 They have operations that manipulate the data (in specific ways)

4

Queue
First In – First out (FIFO)

Remember: work is done at BOTH ends of the queue:

Adding to the tail; Removing from the head.

Queues

• Also a list, but inserts happen at one end (e.g. “back”)

and removals happen at the other end (e.g. “front”)

• First In-First Out (FIFO)

 Fields:

 front – reference to the front of the stack (list)

 back – reference to the back of the stack (list)

 Operations:

add/enqueue – insert at one end (e.g. back/tail) of the queue (item is passed in)

remove/dequeue – delete at the other end (e.g. front/head) of the queue

 Work is done at both ends, adding to the back/tail and removing from the front/head

• Java Collections provides the Queue<T> interface (implemented by LinkedList<T>) 6

Queue Implementations

• Linked list and array implementations are constant time for all operations

 Disclaimer about a full vector queue:

 When the internal array is full, you have to resize which isn't constant time (and
contradicts the statement above)

• Array or vector

 theArray

 front position/index

 back position/index

 current size

• LinkedList

7

Application of Queue

• Scheduling / Lines in general

 Queue is useful in CPU scheduling, Disk Scheduling. When multiple processes require
CPU at the same time, various CPU scheduling algorithms are used which are
implemented using Queue data structure.

• Asynchronous data transfer / File serving

 When data is transferred asynchronously between two processes. Queue is used for
synchronization. Examples : IO Buffers, pipes, file IO, etc.

8

Application of Queue

• Print spooling

 Documents are loaded into a buffer and then the printer pulls them off the buffer at its
own rate. Spooling also lets you place a number of print jobs on a queue instead of
waiting for each one to finish before specifying the next one.

• Handling of interrupts in real-time systems

 The interrupts are handled in the same order as they arrive, First come first served.

9

Application of Queue

• Call Center phone queues

 In real life, Call Center phone systems will use Queues, to hold people calling them in an
order, until a service representative is free.

• Breadth First search

• … and many more!

10

Queue: Array Implementation

• Operations [tail/back is pointing at actual last element]

 enqueue [add at tail/back; element to be added is passed into the method]

 check if there is enough room, if so…

 increment current size,

 increment tail/back

 set theArray[tail] = element

 dequeue [remove at head]

 set return value to theArray[head]

 decrement current size,

 increment head/front

11

Queue: LinkedList Implementation

• Also used “head” and “tail” instead of “front” and “back”

12

Queue: LinkedList Implementation Diagram

13

Queue: LinkedList Implementation

• In the Queue<T> class, we use a LinkedList as the underlying implementation for the

Queue.

• Constructor (and class attribute):

// field: LinkedList called list representing the queue

private LinkedList<T> list;

/**

* Constructor: Initialize the inner list

*/

public Queue(){

list = new LinkedList<T>();

}
14

Queue: LinkedList Implementation

• enqueue(T data) method:

// Simply add the data to the tail of the linked list
public void enqueue(T data) {

// Body ... Simply call the appropriate method in LinkedList class
}

• dequeue() method (with T return type):

// Simply remove data from the head of the list
public T dequeue(){

// Body ... Simply call the appropriate method in LinkedList class
}

15

LinkedList Class: insertAtHead() method

• How might we accomplish this?

public void insertAtHead(T data)

 // The method takes in data to be included in a node in the Queue

 // Create a brand new node of type ListNode<T> and include the data
ListNode<T> nodeToAdd = new ListNode<T>(data);
// use ListNode non-default constructor

16

[HEAD] Some LinkedList [TAIL] null

Head Tail

null

addMe nodeToAdd

LinkedList Class: insertAtHead() method (cont’d)

public void insertAtHead(T data)

 // Let’s set up the new node’s next and previous pointers

 // nodeToAdd’s next pointer should point to what the head node’s next pointer was
pointing to (node with data=“Some”)

 // since nodeToAdd is to become the first actual node, it’s prev pointer should point at
the dummy head node
nodeToAdd.next = head.next;
nodeToAdd.prev = head;

17

[HEAD] Some

Head

null

addMe nodeToAdd

nextprev

LinkedList Class: insertAtHead() method (cont’d)

public void insertAtHead(T data)

 // Let’s set up the dummy head node’s next and previous pointers

 // The prev pointer of the node the dummy head was pointing to (data=“Some”) should
point at nodeToAdd

 // The next pointer of the dummy head node should now point to the new nodeToAdd
head.next.prev = nodeToAdd; // head.next is the “Some” node
head.next = nodeToAdd;
this.size++; // Increment size by 1

18

[HEAD] Some

Head

null addMe

nodeToAdd

[HEAD] Some

Head

null

Remember how it was:

prev

next

[Queue] What would an
array-based
implementation look like?

Queue – add() and remove() methods

• Think about how you would keep track of where to insert into the array and where you

would remove from the array [Hint: pointers]

• Think about how you would handle the fact that when you remove from an array, you have

an empty slot

[Hint: either shift all the elements inside the array, or just keep track, via int pointers, of the

location of the head and tail]

• Are there other ways you can think

of to do this?

20

Queue ()
final int INITIAL_SIZE = 4; // a constant

String[] elements;

int currentSize, head, tail; // head and tail are position pointers

public Queue() {

this.elements = new String[this.INITIAL_SIZE];

this.currentSize = this.head = this.tail = 0;

// all initialized to 0

}

22

Queue – Implementing
add() and remove() methods

• Add() with parameter [ADD AT “TAIL” (END) OF QUEUE]

 Increment size counter

 Add at the tail: myQueueArr[tail] = v; // v is the value

 Adjust tail to be: tail = (tail + 1) % myQueueArr.length; // can loop

• Remove() [REMOVE FROM “HEAD” (FRONT) OF QUEUE]

 Check if queue is empty, if so return null

 Remove at the head: int removed = myQueueArr[head]; // to return

 Adjust head to be: head = (head + 1) % myQueueArr.length; // can loop

 Decrement size counter

 return removed

