
CS 2100: Data Structures & Algorithms 1

Introduction to Queues

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Stacks and Queues

3

Abstraction: Stacks and Queues

• We can think of a stack or a queue as an abstraction

 We can implement them in different ways

 They have operations that manipulate the data (in specific ways)

4

Queue
First In – First out (FIFO)

Remember: work is done at BOTH ends of the queue:

Adding to the tail; Removing from the head.

Queues

• Also a list, but inserts happen at one end (e.g. “back”)

and removals happen at the other end (e.g. “front”)

• First In-First Out (FIFO)

 Fields:

 front – reference to the front of the stack (list)

 back – reference to the back of the stack (list)

 Operations:

add/enqueue – insert at one end (e.g. back/tail) of the queue (item is passed in)

remove/dequeue – delete at the other end (e.g. front/head) of the queue

 Work is done at both ends, adding to the back/tail and removing from the front/head

• Java Collections provides the Queue<T> interface (implemented by LinkedList<T>) 6

Queue Implementations

• Linked list and array implementations are constant time for all operations

 Disclaimer about a full vector queue:

 When the internal array is full, you have to resize which isn't constant time (and
contradicts the statement above)

• Array or vector

 theArray

 front position/index

 back position/index

 current size

• LinkedList

7

Application of Queue

• Scheduling / Lines in general

 Queue is useful in CPU scheduling, Disk Scheduling. When multiple processes require
CPU at the same time, various CPU scheduling algorithms are used which are
implemented using Queue data structure.

• Asynchronous data transfer / File serving

 When data is transferred asynchronously between two processes. Queue is used for
synchronization. Examples : IO Buffers, pipes, file IO, etc.

8

Application of Queue

• Print spooling

 Documents are loaded into a buffer and then the printer pulls them off the buffer at its
own rate. Spooling also lets you place a number of print jobs on a queue instead of
waiting for each one to finish before specifying the next one.

• Handling of interrupts in real-time systems

 The interrupts are handled in the same order as they arrive, First come first served.

9

Application of Queue

• Call Center phone queues

 In real life, Call Center phone systems will use Queues, to hold people calling them in an
order, until a service representative is free.

• Breadth First search

• … and many more!

10

Queue: Array Implementation

• Operations [tail/back is pointing at actual last element]

 enqueue [add at tail/back; element to be added is passed into the method]

 check if there is enough room, if so…

 increment current size,

 increment tail/back

 set theArray[tail] = element

 dequeue [remove at head]

 set return value to theArray[head]

 decrement current size,

 increment head/front

11

Queue: LinkedList Implementation

• Also used “head” and “tail” instead of “front” and “back”

12

Queue: LinkedList Implementation Diagram

13

Queue: LinkedList Implementation

• In the Queue<T> class, we use a LinkedList as the underlying implementation for the

Queue.

• Constructor (and class attribute):

// field: LinkedList called list representing the queue

private LinkedList<T> list;

/**

* Constructor: Initialize the inner list

*/

public Queue(){

list = new LinkedList<T>();

}
14

Queue: LinkedList Implementation

• enqueue(T data) method:

// Simply add the data to the tail of the linked list
public void enqueue(T data) {

// Body ... Simply call the appropriate method in LinkedList class
}

• dequeue() method (with T return type):

// Simply remove data from the head of the list
public T dequeue(){

// Body ... Simply call the appropriate method in LinkedList class
}

15

LinkedList Class: insertAtHead() method

• How might we accomplish this?

public void insertAtHead(T data)

 // The method takes in data to be included in a node in the Queue

 // Create a brand new node of type ListNode<T> and include the data
ListNode<T> nodeToAdd = new ListNode<T>(data);
// use ListNode non-default constructor

16

[HEAD] Some LinkedList [TAIL] null

Head Tail

null

addMe nodeToAdd

LinkedList Class: insertAtHead() method (cont’d)

public void insertAtHead(T data)

 // Let’s set up the new node’s next and previous pointers

 // nodeToAdd’s next pointer should point to what the head node’s next pointer was
pointing to (node with data=“Some”)

 // since nodeToAdd is to become the first actual node, it’s prev pointer should point at
the dummy head node
nodeToAdd.next = head.next;
nodeToAdd.prev = head;

17

[HEAD] Some

Head

null

addMe nodeToAdd

nextprev

LinkedList Class: insertAtHead() method (cont’d)

public void insertAtHead(T data)

 // Let’s set up the dummy head node’s next and previous pointers

 // The prev pointer of the node the dummy head was pointing to (data=“Some”) should
point at nodeToAdd

 // The next pointer of the dummy head node should now point to the new nodeToAdd
head.next.prev = nodeToAdd; // head.next is the “Some” node
head.next = nodeToAdd;
this.size++; // Increment size by 1

18

[HEAD] Some

Head

null addMe

nodeToAdd

[HEAD] Some

Head

null

Remember how it was:

prev

next

[Queue] What would an
array-based
implementation look like?

Queue – add() and remove() methods

• Think about how you would keep track of where to insert into the array and where you

would remove from the array [Hint: pointers]

• Think about how you would handle the fact that when you remove from an array, you have

an empty slot

[Hint: either shift all the elements inside the array, or just keep track, via int pointers, of the

location of the head and tail]

• Are there other ways you can think

of to do this?

20

Queue ()
final int INITIAL_SIZE = 4; // a constant

String[] elements;

int currentSize, head, tail; // head and tail are position pointers

public Queue() {

this.elements = new String[this.INITIAL_SIZE];

this.currentSize = this.head = this.tail = 0;

// all initialized to 0

}

22

Queue – Implementing
add() and remove() methods

• Add() with parameter [ADD AT “TAIL” (END) OF QUEUE]

 Increment size counter

 Add at the tail: myQueueArr[tail] = v; // v is the value

 Adjust tail to be: tail = (tail + 1) % myQueueArr.length; // can loop

• Remove() [REMOVE FROM “HEAD” (FRONT) OF QUEUE]

 Check if queue is empty, if so return null

 Remove at the head: int removed = myQueueArr[head]; // to return

 Adjust head to be: head = (head + 1) % myQueueArr.length; // can loop

 Decrement size counter

 return removed

