
CS 2100: Data Structures & Algorithms 1

Introduction to Stacks

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Stacks and Queues

Reminder: Collections Framework

• The Java Collections Framework is really:

 A common set of operations for “abstract” data structures

 List Interface: Operations for any kind of list

 Set Interface: Operations for any kind of set

 Map Interface: Operations for any kind of map

 A set of useful concrete classes that we can use

 Example: ArrayList, HashMap, TreeSet, …

 A common set of operations for all Collections

 Collection Interface: Operations we can perform on any Collection object

 Collections Class: Contains static methods that can process Collection and List objects

Java Collections
Framework

• Java Collections Framework

 List Interface

 Set Interface

 Map Interface

• Consists of: concrete classes (red),

and interfaces (yellow)

5

Note: Not a complete diagram.

There are more things to the Java

Collections Framework!

6

https://www.codejava.net/java-

core/collections/overview-of-java-

collections-framework-api-uml-

diagram

Note: Not a complete diagram.

There are more things to the Java

Collections Framework!

https://www.codejava.net/java-core/collections/overview-of-java-collections-framework-api-uml-diagram

More Reminders about Abstraction…

• Inheritance is an example of the principle of abstraction:

 Inheritance of implementation (is-a)

 Subclass item is a specialized type of some more general object (parent)

 Inheritance of interface (Java interfaces)

 An object is an instance of something that can be used or operated on in a certain
defined way

 HashSet acts like a Collection or Set

Black Box Idea

The black box idea is important in designing software

• Some component X, i.e., part of the system, is like a black box

• The rest of the system knows how to interact with it through its interface (in the general

sense)

• The rest of the system doesn’t know how it is implemented!

• We may swap in different components for X as long as each has the same interface as X

Abstraction

• Wikipedia (general def.): An abstraction is an idea, conceptualization, or word for the

collection of qualities that identify the referent of a word used to describe concrete objects

or phenomena.

• Wikipedia (CS): In computer science, abstraction is a mechanism and practice to reduce

and factor out details so that one can focus on a few concepts at a time.

Abstraction: Stacks and Queues

• We can think of a stack or a queue as an abstraction, too

 We can implement them in different ways

 They have operations that manipulate the data (in specific ways)

• Let’s see what stacks and queues are all about…

Stacks and Queues

• LIFO (stack) vs. FIFO (queue)

5

4

3

2

1

0

Stack
Last In – First out (LIFO)

Remember: work is done at ONE end:

Pushing and Popping from the top of the Stack

Stacks
• List with restrictions

 “Insert”, “Delete”, and “Find”; concept of “top” of list

• Last In, First Out (LIFO)

 Field:

 top – reference to the top of the stack

 Operations:

push(x) – push an item onto the stack at the top [“insert”]

pop() – get and remove the top item [“delete”] off the stack

peek()/top() – look at (examine), but do NOT take, the top item

 Remember: Work is done at one end, the top (think: a hole in the ground)

• Java Collections provides the Stack<T> class

Applications of Stack

• Expression Evaluation

 Stack is used to evaluate prefix, postfix and infix expressions.

• Expression Conversion

 An expression can be represented in prefix, postfix or infix notation. Stack can be used to
convert one form of expression to another.

• Syntax Parsing

 Many compilers use a stack for parsing the syntax of expressions, program blocks etc.
before translating into low level code.

Applications of Stack
• Backtracking

 Suppose we are finding a path for solving maze problem. We choose a path and after
following it we realize that it is wrong. Now we need to go back to the beginning of the
path to start with new path. This can be done with the help of stack.

• Parenthesis Checking/Matching

 Stack is used to check the proper opening and closing of parenthesis.

• String Reversal

 Stack is used to reverse a string. We push the characters of string one by one into stack and
then pop character from stack.

Applications of Stack
• Function Call

 Stack is used to keep information about the active functions or subroutines.

 The “runtime stack”

• Depth First Search

• …Many more!

Stack Applications: Symbol Balancing

• Read characters to end of file

 If opening symbol, push onto stack

 If closing symbol

 If stack empty, then error – closed but never opened

 Else pop stack

 If popped symbol is not corresponding opening symbol, then error – symbols mismatched

 If at EOF and stack not empty, then error – opened but never closed

17

Stack Applications: Symbol Balancing

{ ([]) }

[

(

{

18

• Read characters to end of file

 If opening symbol, push onto stack

 If closing symbol

 If stack empty, then error – closed but never opened

 Else pop stack

 If popped symbol is not corresponding opening symbol, then error – symbols mismatched

 If at EOF and stack not empty, then error – opened but never closed

Let’s solve

this together!

Stack Applications: Symbol Balancing

{ [(})]

(

[

{

19

• Read characters to end of file

 If opening symbol, push onto stack

 If closing symbol

 If stack empty, then error – closed but never opened

 Else pop stack

 If popped symbol is not corresponding opening symbol, then error – symbols mismatched

 If at EOF and stack not empty, then error – opened but never closed

Let’s solve

this together!

Stack Applications: Postfix Calculator

• For each input token (number or operator):

 If number

 Push number onto stack

 If operator

 Apply operator to two (2) numbers popped from stack, then place result on stack

• After end of input, there should be exactly one (1) number left on the stack

20

Stack Applications: Postfix Calculator

• For each input token (number or operator):

 If number

 Push number onto stack

 If operator

 Apply operator to two (2) numbers popped from stack,
then place result on stack

• After end of input, there should be exactly one (1) number

left on the stack 21

6 5 2 3 + 8 * + 3 + *

Let’s solve

this together!

[Stack] What would the
implementation look like?

Stack: LinkedList Implementation

• Linked List

 push: insert at front of list

 pop: remove element at front of list

 peek/top: examine element at front of list

23

Stack: Linked List Implementation Diagram

24

Stack: Array Implementation (traditional)

25

Stack Summary

• List with restrictions

 Insert and delete can only be performed at the top of the list

 LIFO: Last In, First Out

• Implementations

 Linked List

 Array

 Vector (variable size "array")

26

Stack:
Slight variation-- where top floats above

private String[] theStack;

private final int STACK_SIZE = 3;

private int top;

public Stack() {

this.theStack = new String[STACK_SIZE];

this.top = 0;

}

Stack – push() method

public void push(String s){

growIfNecessary(); // if running out of room...

theStack[top] = s; // new item inserted at position "top"

top++; // increment top pointer (ready for new item)

}

5

4

3

2

1

0

Stack – pop() method // peek()
public String pop(){

if(top == 0){ // if nothing in the Stack (when top is at 0)

return null; // return null

}

top--; // otherwise, decrement top to point to current top item...

return theStack[top]; // and return the item that was at the top

// when the next push operation happens, item will be added here

}

5

4

3

2

1

0

Stack – GrowIf Necessary() method
private void growIfNecessary(){

if(top == theStack.length){
String[] newStack = new String[2*theStack.length];
// Copy the current stack into more space:
for(int i = 0; i < theStack.length; i++){

newStack[i] = theStack[i];
}

theStack = newStack; // Replace the old stack
}

}

31

