
CS 2100: Data Structures & Algorithms 1

Introduction to Linked Lists

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Linked Lists

• Arrays and Vectors use contiguous memory to store data

 Arrays built into Java and have special syntax

 Vectors an extension of arrays.

• A Linked List is a list that stores nodes connected to one another through references

 Each element in the list is a ListNode

 Stores the data inside that element

 Stores references to the next and previous elements

3

data

Node object

nextprev

[HEAD] Some LinkedList [TAIL] null

Head Tail

null

Linked List Example

• This Linked List, specifically known as a doubly linked list, has nodes with two references

 next and previous

• There are special head and tail references that point to the first and last node in the list

respectively

• The last element (tail) will have the next pointer point at null (end of the list!)

• The first element (head) will have the prev pointer point at null (front of the list!)

4

Linked List - Other Diagrams

5

Head Tail

Linked List - Other Diagrams

6

Linked List Properties [Code Example]

• head: reference to the first node in Linked List

 This first node is a dummy node (not part of the actual list)

• tail: reference to the last node in Linked List

 It is also a dummy node

• size: Number of elements in the list currently

7

List Node Properties [Code Example]

• data: the actual thing being stored in the list

• next: Reference to memory where the next node can be found

• prev: Reference to memory where the previous node can be found

8

Inserting at Tail

• Here is how to insert at the tail of a Linked List

 Notice, this is ALWAYS fast no matter how big (# elements) the list is

9

18 [TAIL] null

Tail

35

newNode

e.g. 35

18 [TAIL] null

Tail

next
prev

x

prev
next

Keeping Track of Nodes

• The LinkedList class doesn’t directly keep track of every node

 We access every node indirectly through the head

• For example, head.next.next.next.data = 5
 Always remember: a node isn’t a value, it’s a value AND a next

 So you need to use the dot operator to access the value or next separately

[H] 6 7 5 null

Head

3 0 [T]

TailHead.next
Head.next.next

uhh, you get the idea :)

11

[H] 6 7 5 null

Head

3 0 [T]

Tail

t

[H] 6 7 5 null

Head

3 0 [T]

Tail

t

Loop

over!

Iterator “t”

As long as pointer to “next” is not null, keep going!

ListIterator

• Problem: head and tail fields are private! So, if I am using Linked List and need to, say,

loop through it manually I can't do it. Well, I can use get(), but that is VERY slow

• Solution: Supply a special type of object called an iterator

 Provides methods for moving forward and backward through the list manually.

12

Using the ListIterator

private static <T> void printList(LinkedList< T > list) {
//iterator points to first element
list.ListIterator<T> it = list.front();

while(!it.isPastEnd()) {
System.out.print(it.value() + ", ");
it.moveForward();

}
}

13

Linked List: Insert and Remove at Iterator

• How might we tackle these behaviors?

14

Advantages and
Disadvantages
Of Linked Lists

15

Linked List Advantages

• Can insert in front or back of list in constant time (VERY FAST)

 Same for insertAt(Iterator)

• Likewise, can remove from front or back in constant time

• List nodes are scattered in memory, so no need for OS to find a contiguous block for the

list

• Don't have unused space like a vector does

• Don't need to "grow in size" when they fill up.

16

Linked List Disadvantages

• Slow to get an index in middle of list because have to traverse from head or tail

 Arrays can go directly to an index, why?

• Doesn't work well with cache, so arrays often faster in practice

 Do you know what a cache is yet?

• All of the next and prev references use extra space.

17

