[UNIVERSITY
I\/IRGINIA

CS 2100: Data Structures & Algorithms 1

Introduction to Liinked L.ists

Dr. Nada Basit// basit@virginia.edu
Spring 2022

Friendly Reminders

—_— .

- Masks are required at all times during class (University Policy)

- If you forget your mask (or mask is lost/broken), | have a few available
- Just come up to me at the start of class and ask!

- No eating or drinking in the classroom, please

- Our lectures will be recorded (see Collab) - please allow 24-48 hrs to post

- If you feel unwell, or think you are, please stay home
- We will work with you!
- At home: eye mask instead! Get some rest ©

Linked Lists

—_—

- Arrays and Vectors use contiguous memory to store data
- Arrays built into Java and have special syntax
- Vectors an extension of arrays.

null LinkedList [TAIL] null

\ Tail

Head

- A Linked List is a list that stores nodes connected to one another through references
- Each element in the list is a ListNode .
.. Node object

- Stores the data inside that element

] prev next
- Stores references to the next and previous elements

Linked List Example

—_— .

- This Linked List, specifically known as a doubly linked list, has nodes with two references
* next and previous

- There are special head and tail references that point to the first and last node in the list
respectively

- The last element (tail) will have the next pointer point at null (end of the list!)

- The first element (head) will have the prev pointer point at null (front of the list!)

Node 1 (head) Node 4 (tail)

AL

- null

Linked List - Other Diagrams

—_— . —————

Linked List<T>

head tail

int size; 2

Head Tail
List Node<T> List Node<T> List Node<T> List Node<T>
T data: -1 T data: 5 T data: 5 T data: -1

next . next > next > next

prev « prev “ prev . prev

Linked List - Other Diagrams

Node 1 (head) Node 4 (tail)

/I‘\-/I;U\N‘Odes 7 I\null

null

head ptr

Address

of Nodes
Node n1 '#101 Node n2 #706_ Node n3 (#004)
NULL < NULL || 10 || #706 .| #101 || 45 || #004 .| #706 | 57 || NULL —> NULL
prev ptr Data nextptr prev ptr Data nextptr prev ptr Data nextptr

head node

Linked List Properties [Code Example]

- head: reference to the first node in Linked List
- This first node i1s a dummy node (not part of the actual list)

- tall: reference to the last node in Linked List
- It 1s also a dummy node

- size: Number of elements in the list currently

public class LinkedlList<T> implements List<T>»{

/* Dummy head and tail */
private ListNode<T>» head, tail;
private int size;

/* Set pointers */
head.next = tail;
head.prev = null;
tail.prev = head;
tail.next = null;

/* Set size to @ */
this.size = 83

List Node Properties [Code Example]

- data: the actual thing being stored in the list
- next: Reference to memory where the next node can be found

- prev: Reference to memory where the previous node can be found

public class ListNode<T> {

/* Data belng stored 1n this node */
private T data;

/¥ Reference to the next node 1n the list */
protected ListNode<T>» next;
protected ListNode<T> prev;

— - -

Inserting at Tail ¥ Tail

- Here is how to insert at the tail of a Linked Llist
- Notice, this is ALWAY'S fast no matter how big (# elements) the list is

public class LinkedList<T> { / e.g. 35

public void insertAtTail(T data) {
ListNode<T> newNode = new ListNode<T>(data);
newNode.next = tail;
newNode.prev = tail.prev;
tail.prev.next = newNode;
tail.prev = newNode;

newNode

this.size++;

Keeping Track of Nodes

- — ., ———

- The LinkedList class doesn’t directly keep track of every node
- We access every node indirectly through the head

- For example, head.next.next.next.data = 5
- Always remember: a node isn’t a value, it’s a value AND a next
- S0 you need to use the dot operator to access the value or next separately

null

{

Head Head next uhh, you get the idea :) Tail

Head.next.next

Head Tail

As long as pointer to “next” is not null, keep going!

N N N NN N

null

Head Tail

ListIterator

—_— . —————

- Problem: head and tail fields are private! So, if I am using Linked List and need to, say,
loop through it manually | can't do it. Well, I can use get(), but that is VERY slow

- Solution: Supply a special type of object called an iterator
* Provides methods for moving forward and backward through the list manually.

public class ListIterator< T > {

protected ListNode< T > curNode;
public boolean isPastEnd();

public ListTterator(ListNode< T > curNode) { public boolean isPastBeginning();

this.curNode = curNode;
.
J

public T value();

public void moveForward();
public void moveBackward();

Using the ListIterator

M

private static <T> void printList(LinkedList< T > list) {
//iterator points to first element
list.ListIterator<T> it = list.front();

while(!it.isPastEnd()) {
System.out.print(it.value() + ", ");
it.moveForward();

public boolean isPastEnd();
public boolean isPastBeginning();

public vold moveForward();
public void moveBackward();
] public T value();

Linked List: Insert and Remove at Iterator

- How might we tackle these behaviors?

J,.I’ﬂtﬂt
¥ Inserts data after the node pointed to by iterator
*/

public void insert(ListIterator<T» it, T data) {

,r"**
* Remove based on Iterator position
* Sets the iterator to the node AFTER the one removed
*/

public T remove(ListIterator<T> it) {

Advantages and
Disadvantages

Of Linked Lists

Linked List Advantages

_

- Can insert in front or back of list in constant time (VERY FAST)
- Same for insertAt(lterator)

- Likewise, can remove from front or back in constant time

- List nodes are scattered in memory, so no need for OS to find a contiguous block for the
list

- Don't have unused space like a vector does

- Don't need to "grow in size" when they fill up.

Linked List Disadvantages

_

- Slow to get an index in middle of list because have to traverse from head or tail
- Arrays can go directly to an index, why?

- Doesn't work well with cache, so arrays often faster in practice
- Do you know what a cache is yet?

- All of the next and prev references use extra space.

