
1

Adapted from: https://www.learnhowtoprogram.com/java/ Data Structures: ArrayList

Determine what type of data the ArrayList will contain.

Data in Java ArrayLists isn't required to be one single type like it is in an Array.
However, if your ArrayList's data will be a single type, it is best practice to declare
that type in angle brackets, like so:

import java.util.ArrayList;

ArrayList<String> myStringList = new ArrayList<String>();

ArrayList <Integer> myIntegerList = new ArrayList<Integer>();

ArrayList <Boolean> myBooleanList = new ArrayList<Boolean>();

Generics

The String, Integer and Boolean keywords we see in the angle brackets <> above
are known as generics. Generics were introduced in 2004 as part of JDK 5.0 in
order to allow the Java compiler to catch and alert us of more errors while compiling
code, before we ever run our programs. Generic types tell Java what kind of object
this data structure can hold.

The generic type can be any object type. Object types are simply data types that
are objects. They're easy to spot because their first letter is capitalized. Since
primitives are not objects, you'll have to use their object type wrapper class when
creating an ArrayList instead (ie: use Integer instead of int. Integer is an object
type, and int is a primitive).

It is generally a good idea to use the generic type for a couple reasons:

• Preventing your code from breaking: You may want to iterate through your list
and call String specific methods on each item. If you had an Integer stored in
the list your application would break.

• It allows for better code clarity, so other programmers reading or using your
code know what they are allowed to do with each list.

• They allow the compiler to catch more errors during compilation, before you
run your program. This saves you time tracking down pesky bugs.

nb3f
Highlight

nb3f
Highlight

nb3f
Highlight

2

You will find that the following information might not make sense right away. As we
learn more about Java (especially the Object class and Inheritance, … etc.) over the
following weeks, you can come back to this and hopefully it will make more sense.
(In other words, if it doesn’t make sense now, don’t worry!)

Storing Varying Data in ArrayLists

Earlier we mentioned “data in Java ArrayLists isn't required to be one single type”
(although often it is.) This section will briefly explain how to store a variety of differing
data types in a single ArrayList.

To place objects of different types in the same ArrayList, declare the ArrayList's
generic as <Object>. That is, declare the data type to be “Object” within the angle
brackets, like so:

ArrayList<Object> objectList = new ArrayList<Object>();

All objects inherit from a built-in Java class called Object. This is why we can simply
declare their type as Object, because they are instances of the Object class, too.
We'll learn more about the concept of inheritance later, just know any object can use
methods defined by the Object class, or be stored in an Object type variable.

A Word of Warning Regarding Object Types

However, if you declare Object as the generic type you will no longer be able to
use class-specific methods on the contents of the array list. By declaring
everything in the ArrayList as the more general Object, you lose the ability to call
methods meant for more specific classes like String.

For example, a string saved as an Object in an ArrayList, like this....

ArrayList<Object> objectList = new ArrayList<Object>();

objectList.add("Hello");

...Can no longer have String-specific methods like .toUpperCase() called on it. You
can still use methods defined by the Object class, though, like toString(),
.equals() and .getClass().

nb3f
Highlight

nb3f
Highlight

