
CS 2100: Data Structures & Algorithms 1

Java Generics

Dr. Nada Basit // bas i t @ v i rg in ia . ed u

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

Generics in Java
In the context of Vectors

3

Generics

• An abstraction of data representation

• The idea is to allow type (Integer, String, …etc and user defined types) to be a parameter

to methods, classes and interfaces.

• For example, classes like ArrayList, Vector, HashSet, HashMap, etc. use generics very well.

We can use them for any type.

4

Generics – An Abstraction
(Ensuring type-safety)

• There exists a Generic type
e.g. ArrayList<T> Map<K, V>
It specifies what kind of objects can be “used” by the class, interface, method, etc.

• List, Set and Map interfaces all accept Generic type specifiers

• For instance, ArrayList will accept any object, but this line specifies Strings:

 ArrayList<String> myList = new ArrayList<String>();

• This allows the compiler to check for type safety

• All code you will write that deals with generics will be collection-related code!

• https://docs.oracle.com/javase/tutorial/java/generics/types.html

5

E - Element (used extensively by the

Java Collections Framework)

K - Key

N - Number

T - Type

V - Value

S,U,W etc. - 2nd, 3rd, 4th types

5

Generics
• A generic type is a generic class or interface that is parameterized over types

 Defined using angle brackets: ArrayList<T>
 Specifies what kind of objects can be “used” by the class

 Ex: ArrayList<T> can store elements of type T

 Ex: Map<K, V> has keys of type K and values of type V

• E=Element; K=Key; V=Value; N=Number; T=Type; S,U,… = additional

https://docs.oracle.com/javase/tutorial/java/generics/types.html6

6

Motivation

• We can make the Vector from previous slides better...

 Now, can only store doubles, but what about int, String, etc.

• Would be nice if there was a way to write one class that could store ANY type of object

• Wildcards and Generics allows us to do this.

7
https://docs.oracle.com/javase/tutorial/java/generics/why.html

Wildcards

• Wildcards allow programmers to specify a generic type for an object or parameter.

• Use wildcards when there are no dependencies with other variables or parameters.

 I.e., this method will accept any type

 However, the type that is eventually used does not have to match any other variable or
parameters (it’s standalone)

8

Generics

• Generics are essentially the same, but should be used when there is a dependency across

variables.

• Below, means there will be a generic and is referred to as T

• Later, params T[] list and T value can be any types

 But, T[] in list and T in value MUST match

9

Example of Generic Class & Using A Generic Class

• You don’t see actual

types

• Instead, you see

Generics in the class

• When you actually use

the Generic Class

you can pick

the type.

• Can use many
types ====>

10

Some Advantages of Generics

• Useful when we want a data structure to store any type of object

• Useful when we have multiple variables whose types need to be general but match each

other

11

Some Limitations of Generics

• Cannot set a generic type to a primitive

 But java provides object versions (Integer, Char, etc.) for all primitives.

• Cannot instantiate a generic type

 new T() is NEVER allowed.

 Can cause heap pollution (don't worry about what that is).

• If you need to instantiate a generic type:

 Make the type Object instead

 Manually cast as needed (see next couple slide)

12

Making our Vector Generic

• Turning Vector into a Generic class, we take out the types, put in a placeholder “ T ”

13

Class attributes/fields

&

find() method:

But … Problems!!

• When converting types to Generics, how do we handle the constructor??

• Unfortunately, this causes a problem in Java. It is NOT allowed. So, what is the fix?

Casting!

The

solution:

14

Solution Strategy:

1. Make the type

Object instead

2. Manually cast

Vector get() method

15

getAt() method:

Summary

• Most data structures should be generic, because that is more flexible.

• From here on out, ALL of our data structures will be generic.

 Though we may need to do this Object array trick sometimes.

16

17

Additional Information
about Generics
Some references:

** https://docs.oracle.com/javase/tutorial/java/generics/why.html

** GeeksforGeeks - Generics in Java

18

https://docs.oracle.com/javase/tutorial/java/generics/why.html

Generics Ensure Type-safety
• Without generics, the compiler would happily

allow you to put a Cat into an ArrayList that was

supposed to hold only Dog objects
(ArrayList<Object> dogs…)

dogs.add(aCat);//will be allowed!!

• With generics, you can create type-safe collections
to catch problems at instead of run-

time (ArrayList<Dog> dogs…)

dogs.add(aCat);//compile-time error!

Object Object Object

🐱🐶 🐯

🐶🐶 🐶

🐶🐶 🐶 19

Generics – examples and why they matter

Creating instances of

generified classes

• When you create an ArrayList, you have to tell it the type

of objects allowed in the list

• E.g., … new ArrayList<Dog>()

Declaring and assigning

variables of generic

types

• Assigning object instances to variables of generic types

(polymorphism with generic types)

• E.g., List<Dog> dogs = new ArrayList<Dog>()

Declaring (and invoking)

methods that take

generic types

• Passing arguments to methods that are declared to accept

generic parameter types

• E.g., void foo(List<Dog> list) {. . .}

x.foo(dogs)

20

Using Generic Classes :
Understanding the ArrayList class declaration

Using the generic parameter with ArrayList

• This code:

 ArrayList<String> thisList = new ArrayList<String>();

• Is treated by the compiler as:

public class ArrayList<String> extends AbstractList<String>
… {

// Method declaration for adding elements
public boolean add(String o) {…}

// more code
}

“T” is the convention for

a generic type, unless it

is used in a collection

class where we use “E” for

the type of element

Example

23

23

When does the substitutability property /
Polymorphism work with Generics? [mixing types]

• ArrayList<Animal> animals = new ArrayList<Animal>();

 Since the reference and object types are exactly the same

(ArrayList<Animal>), this will compile!

• ArrayList<Animal> dogLst = new ArrayList<Dog>();

 Even through Dog extends Animal, substitutability/

polymorphism does NOT apply on the generic type

inside the <>. The reference (ArrayList<Animal>) is

different type than the object’s type (ArrayList<Dog>)

(This will not compile!)

• List<Cat> kitties = new ArrayList<Cat>();

 The reference type (List<Cat>) is a superclass of the

object’s type (ArrayList<Cat>). This is an application

of polymorphism on the container types.

(This will compile!)

abstract class Animal {
public String makeNoise() {
return “…”

}
}

class Dog extends Animal {
public String makeNoise() {

return “Woof!”
}

}

class Cat extends Animal {
public String makeNoise() {

return “Meow!”
}

}

24

When does the substitutability property /
Polymorphism work with Generics? [mixing types]

• ArrayList<Cat> catdog = new ArrayList<Dog>();

 For obvious reasons this does not work, since Cat and Dog

are not related in any way. (This will not compile!)

• ArrayList<Cat> catLst = new ArrayList<Cat>();

ArrayList<Animal> animals = catLst;

 This will not compile, since the new reference animals

type (ArrayList<Animal>) is not the same as the type of

the object that variable catLst holds (ArrayList<Cat>);

once more, polymorphism does not apply on the generic

type of the container type ArrayList.

• ArrayList<Object> myObjs = new ArrayList<Animal>();

 Since the reference (ArrayList<Object>) is different type

than the object’s type (ArrayList<Animal>); polymorphism

does not apply on the generic type inside the <>.

(This will not compile!)

abstract class Animal {
public String makeNoise() {
return “…”

}
}

class Dog extends Animal {
public String makeNoise() {

return “Woof!”
}

}

class Cat extends Animal {
public String makeNoise() {

return “Meow!”
}

}

25

How does Generics work with method parameters?
• public static void takeAnimals(ArrayList<Animal> animals) {…}

• Method parameters:

 If a method takes in an ArrayList of a certain type, that is the ONLY type that will be
accepted!

 Polymorphism and substitutability will not work in this case (using the syntax given
above)

 If Cat extends Animal, and we pass to method takeAnimals an ArrayList of Cat,

it will NOT compile since it accepts an ArrayList of Animal.

26

Generics Example in method parameter (1)
public static void main(String[] args) {

ArrayList<Animal> animals = new ArrayList<Animal>();

animals.add(new Dog(“Cleo"));

animals.add(new Cat(“Ginger"));

animals.add(new Dog(“Sandy"));

takeAnimals(animals);

}

public static void takeAnimals(ArrayList<Animal> animals) {

for (Animal a : animals) {

Vet.giveShot(a); }

}

abstract class Animal {
public String makeNoise() {

return “…”
}

}

class Dog extends Animal {
public String makeNoise() {

return “Woof!”
}

}

class Cat extends Animal {
public String makeNoise() {

return “Meow!”
}

}

27

Generics Example in
method parameter (2)

public static void main(String[] args) {

ArrayList<Animal> animals = new ArrayList<Animal>();

animals.add(new Dog(“Cleo"));

animals.add(new Cat(“Ginger"));

animals.add(new Dog(“Sandy"));

takeAnimals(animals);

ArrayList<Cat> cats = new ArrayList<Cat>();

cats.add(new Cat(“Midnight”));

cats.add(new Cat(“Pringle”));

takeAnimals(cats);

}

public static void takeAnimals(ArrayList<Animal> animals) {
for (Animal a : animals) {

Vet.giveShot(a); }
}

abstract class Animal {
public String makeNoise() {

return “…”
}

}

class Dog extends Animal {
public String makeNoise() {

return “Woof!”
}

}

class Cat extends Animal {
public String makeNoise() {

return “Meow!”
}

}

28

Generics Example in
method parameter (2)

29

public static void main(String[] args) {

ArrayList<Animal> animals = new ArrayList<Animal>();

animals.add(new Dog(“Cleo"));

animals.add(new Cat(“Ginger"));

animals.add(new Dog(“Sandy"));

takeAnimals(animals);

ArrayList<Cat> cats = new ArrayList<Cat>();

cats.add(new Cat(“Midnight”));

cats.add(new Cat(“Pringle”));

takeAnimals(cats);

}

public static void takeAnimals(ArrayList<Animal> animals) {
for (Animal a : animals) {

Vet.giveShot(a); }
} 29

public static void main(String[] args) {

ArrayList<Animal> animals = new ArrayList<Animal>();

animals.add(new Dog(“Cleo"));

animals.add(new Cat(“Ginger"));

animals.add(new Dog(“Sandy"));

takeAnimals(animals);

ArrayList<Cat> cats = new ArrayList<Cat>();

cats.add(new Cat(“Midnight”));

cats.add(new Cat(“Pringle”));

takeAnimals(cats);

}

public static void takeAnimals(ArrayList<? extends Animal> animals) {
for (Animal a : animals) {

Vet.giveShot(a); }
}

Generics Example in
method parameter (3)

Animal
30

Generics: Substitutability and Polymorphism
• Generics are VERY SPECIFIC!

public void takeAnimals(ArrayList<Animal> animals) { ... }

• Method only takes ArrayList typed with Animal

• Polymorphism and substitutability will not work for ArrayLists with other Generics

• Can not call with cats, such as:

takeAnimals(new ArrayList<Cat>()); // Trying to pass ArrayList of type Cat

(Given takeAnimals takes in an ArrayList of type Animal)

31

Generics: Substitutability and Polymorphism
• Generic wildcard: ?

public void takeAnimals(ArrayList<? Extends Animal> animals)
{ ... }

• Use the wildcard, ? Extends SomeClass, to allow polymorphism in generics

• This WILL accept any ArrayList that is parameterized with any subclass of Animal
32

32

