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Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2



Generics in Java
In the context of Vectors
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Generics

• An abstraction of data representation

• The idea is to allow type (Integer, String, …etc and user defined types) to be a parameter 

to methods, classes and interfaces. 

• For example, classes like ArrayList, Vector, HashSet, HashMap, etc. use generics very well. 

We can use them for any type. 
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Generics – An Abstraction
(Ensuring type-safety)

• There exists a Generic type
e.g. ArrayList<T> Map<K, V>
It specifies what kind of objects can be “used” by the class, interface, method, etc.

• List, Set and Map interfaces all accept Generic type specifiers

• For instance, ArrayList will accept any object, but this line specifies Strings:

 ArrayList<String> myList = new ArrayList<String>();

• This allows the compiler to check for type safety

• All code you will write that deals with generics will be collection-related code!

• https://docs.oracle.com/javase/tutorial/java/generics/types.html
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E - Element (used extensively by the 

Java Collections Framework)

K - Key

N - Number

T - Type

V - Value

S,U,W etc. - 2nd, 3rd, 4th types
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Generics
• A generic type is a generic class or interface that is parameterized over types

 Defined using angle brackets:  ArrayList<T>
 Specifies what kind of objects can be “used” by the class

 Ex: ArrayList<T> can store elements of type T

 Ex: Map<K, V> has keys of type K and values of type V

• E=Element; K=Key; V=Value; N=Number; T=Type; S,U,… = additional

https://docs.oracle.com/javase/tutorial/java/generics/types.html6
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Motivation

• We can make the Vector from previous slides better...

 Now, can only store doubles, but what about int, String, etc.

• Would be nice if there was a way to write one class that could store ANY type of object

• Wildcards and Generics allows us to do this.
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Wildcards

• Wildcards allow programmers to specify a generic type for an object or parameter.

• Use wildcards when there are no dependencies with other variables or parameters.

 I.e., this method will accept any type

 However, the type that is eventually used does not have to match any other variable or 
parameters (it’s standalone)
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Generics

• Generics are essentially the same, but should be used when there is a dependency across 

variables.

• Below, means there will be a generic and is referred to as T

• Later, params T[] list and T value can be any types

 But, T[] in list and T in value MUST match
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Example of Generic Class & Using A Generic Class

• You don’t see actual

types

• Instead, you see

Generics in the class

• When you actually use

the Generic Class

you can pick

the type.

• Can use many
types  ====>
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Some Advantages of Generics

• Useful when we want a data structure to store any type of object

• Useful when we have multiple variables whose types need to be general but match each 

other
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Some Limitations of Generics

• Cannot set a generic type to a primitive

 But java provides object versions (Integer, Char, etc.) for all primitives.

• Cannot instantiate a generic type

 new T() is NEVER allowed.

 Can cause heap pollution (don't worry about what that is).

• If you need to instantiate a generic type:

 Make the type Object instead

 Manually cast as needed (see next couple slide)
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Making our Vector Generic

• Turning Vector into a Generic class, we take out the types, put in a placeholder “ T ”
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Class attributes/fields 

&

find() method:



But … Problems!!

• When converting types to Generics, how do we handle the constructor?? 

• Unfortunately, this causes a problem in Java. It is NOT allowed. So, what is the fix? 

Casting!

The 

solution: 
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Solution Strategy:

1. Make the type 

Object instead

2. Manually cast



Vector get() method
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getAt() method:



Summary

• Most data structures should be generic, because that is more flexible.

• From here on out, ALL of our data structures will be generic.

 Though we may need to do this Object array trick sometimes.
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Additional Information 
about Generics
Some references:

** https://docs.oracle.com/javase/tutorial/java/generics/why.html

** GeeksforGeeks - Generics in Java
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Generics Ensure Type-safety
• Without generics, the compiler would happily 

allow you to put a Cat into an ArrayList that was 

supposed to hold only Dog objects 
(ArrayList<Object> dogs…)

dogs.add(aCat);//will be allowed!!

• With generics, you can create type-safe collections 
to catch problems at instead of run-

time (ArrayList<Dog> dogs…)

dogs.add(aCat);//compile-time error!

Object Object Object

🐱🐶 🐯

🐶🐶 🐶
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Generics – examples and why they matter

Creating instances of 

generified classes

• When you create an ArrayList, you have to tell it the type

of objects allowed in the list

• E.g., … new ArrayList<Dog>()

Declaring and assigning 

variables of generic 

types

• Assigning object instances to variables of generic types 

(polymorphism with generic types)

• E.g., List<Dog> dogs = new ArrayList<Dog>()

Declaring (and invoking) 

methods that take 

generic types

• Passing arguments to methods that are declared to accept 

generic parameter types

• E.g., void foo(List<Dog> list) {. . .}

x.foo(dogs)
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Using Generic Classes : 
Understanding the ArrayList class declaration



Using the generic parameter with ArrayList

• This code:

 ArrayList<String> thisList = new ArrayList<String>();

• Is treated by the compiler as:

public class ArrayList<String> extends AbstractList<String>
… { 

// Method declaration for adding elements
public boolean add(String o) {…}

// more code
}

“T” is the convention for 

a generic type, unless it 

is used in a collection 

class where we use “E” for 

the type of element



Example
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When does the substitutability property / 
Polymorphism work with Generics? [mixing types]

• ArrayList<Animal> animals = new ArrayList<Animal>();

 Since the reference and object types are exactly the same

(ArrayList<Animal>), this will compile! 

• ArrayList<Animal> dogLst = new ArrayList<Dog>();

 Even through Dog extends Animal, substitutability/

polymorphism does NOT apply on the generic type 

inside the <>. The reference (ArrayList<Animal>) is 

different type than the object’s type (ArrayList<Dog>)

(This will not compile!)

• List<Cat> kitties = new ArrayList<Cat>();

 The reference type (List<Cat>) is a superclass of the

object’s type (ArrayList<Cat>). This is an application

of polymorphism on the container types. 

(This will compile!)

abstract class Animal {
public String makeNoise() {
return “…”

}
}

class Dog extends Animal {
public String makeNoise() {

return “Woof!”
}

}

class Cat extends Animal {
public String makeNoise() {

return “Meow!”
}

}

24



When does the substitutability property / 
Polymorphism work with Generics? [mixing types]

• ArrayList<Cat> catdog = new ArrayList<Dog>();

 For obvious reasons this does not work, since Cat and Dog

are not related in any way. (This will not compile!)

• ArrayList<Cat> catLst = new ArrayList<Cat>();

ArrayList<Animal> animals = catLst;

 This will not compile, since the new reference animals 

type (ArrayList<Animal>) is not the same as the type of 

the object that variable catLst holds (ArrayList<Cat>); 

once more, polymorphism does not apply on the generic 

type of the container type ArrayList.

• ArrayList<Object> myObjs = new ArrayList<Animal>();

 Since the reference (ArrayList<Object>) is different type

than the object’s type (ArrayList<Animal>); polymorphism

does not apply on the generic type inside the <>.

(This will not compile!)

abstract class Animal {
public String makeNoise() {
return “…”

}
}

class Dog extends Animal {
public String makeNoise() {

return “Woof!”
}

}

class Cat extends Animal {
public String makeNoise() {

return “Meow!”
}

}
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How does Generics work with method parameters?
• public static void takeAnimals(ArrayList<Animal> animals) {…}

• Method parameters:

 If a method takes in an ArrayList of a certain type, that is the ONLY type that will be 
accepted!

 Polymorphism and substitutability will not work in this case (using the syntax given 
above)

 If Cat extends Animal, and we pass to method takeAnimals an ArrayList of Cat, 

it will NOT compile since it accepts an ArrayList of Animal.
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Generics Example in method parameter (1)
public static void main(String[] args) {

ArrayList<Animal> animals = new ArrayList<Animal>();

animals.add(new Dog(“Cleo"));

animals.add(new Cat(“Ginger"));

animals.add(new Dog(“Sandy"));

takeAnimals(animals);

}

public static void takeAnimals(ArrayList<Animal> animals) {

for (Animal a : animals) {

Vet.giveShot(a);   }

}

abstract class Animal {
public String makeNoise() {

return “…”
}

}

class Dog extends Animal {
public String makeNoise() {

return “Woof!”
}

}

class Cat extends Animal {
public String makeNoise() {

return “Meow!”
}

}
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Generics Example in 
method parameter (2)

public static void main(String[] args) {

ArrayList<Animal> animals = new ArrayList<Animal>();

animals.add(new Dog(“Cleo"));

animals.add(new Cat(“Ginger"));

animals.add(new Dog(“Sandy"));

takeAnimals(animals);

ArrayList<Cat> cats = new ArrayList<Cat>();

cats.add(new Cat(“Midnight”));

cats.add(new Cat(“Pringle”));

takeAnimals(cats);

}

public static void takeAnimals(ArrayList<Animal> animals) {
for (Animal a : animals) {

Vet.giveShot(a);   }
}

abstract class Animal {
public String makeNoise() {

return “…”
}

}

class Dog extends Animal {
public String makeNoise() {

return “Woof!”
}

}

class Cat extends Animal {
public String makeNoise() {

return “Meow!”
}

}
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Generics Example in 
method parameter (2)
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public static void main(String[] args) {

ArrayList<Animal> animals = new ArrayList<Animal>();

animals.add(new Dog(“Cleo"));

animals.add(new Cat(“Ginger"));

animals.add(new Dog(“Sandy"));

takeAnimals(animals);

ArrayList<Cat> cats = new ArrayList<Cat>();

cats.add(new Cat(“Midnight”));

cats.add(new Cat(“Pringle”));

takeAnimals(cats);

}

public static void takeAnimals(ArrayList<Animal> animals) {
for (Animal a : animals) {

Vet.giveShot(a);   }
} 29



public static void main(String[] args) {

ArrayList<Animal> animals = new ArrayList<Animal>();

animals.add(new Dog(“Cleo"));

animals.add(new Cat(“Ginger"));

animals.add(new Dog(“Sandy"));

takeAnimals(animals);

ArrayList<Cat> cats = new ArrayList<Cat>();

cats.add(new Cat(“Midnight”));

cats.add(new Cat(“Pringle”));

takeAnimals(cats);

}

public static void takeAnimals(ArrayList<? extends Animal> animals) {
for (Animal a : animals) {

Vet.giveShot(a);   }
}

Generics Example in 
method parameter (3)

Animal
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Generics: Substitutability and Polymorphism
• Generics are VERY SPECIFIC!

public void takeAnimals(ArrayList<Animal> animals) { ... }

• Method only takes ArrayList typed with Animal

• Polymorphism and substitutability will not work for ArrayLists with other Generics

• Can not call with cats, such as:

takeAnimals(new ArrayList<Cat>()); // Trying to pass ArrayList of type Cat

(Given takeAnimals takes in an ArrayList of type Animal)
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Generics: Substitutability and Polymorphism
• Generic wildcard:  ?

public void takeAnimals(ArrayList<? Extends Animal> animals) 
{ ... }

• Use the wildcard,  ? Extends SomeClass, to allow polymorphism in generics

• This WILL accept any ArrayList that is parameterized with any subclass of Animal
32
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