
CS 2100: Data Structures & Algorithms 1

Introduction to Vectors

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

A Bit More
Polymorphism
With declaring/instantiating/initializing objects

With method parameters

3

More Polymorphism Examples

• List myList = new Vector(); //why does this work?

• Object something = new String(); //a string IS an object

• List myList2 = new List(); //does NOT work, why?

• Vector myList3 = new List(); //does NOT work, why?

4

Quick: Inheritance

• Inheritance: is-a relationship (superclass/subclass)

 public class Mammal extends Animal { }

• Inheritance applies to Interfaces

 The interface is the superclass, the class that implements the Inteface is the subclass

 A subclass IS-A kind of superclass

 E.g.,

 a Vector IS-A kind of List (where List in an Interface)

 a GrandfatherClock IS-A kind of TimeKeeper (where TimeKeeper is an Interface)

5

Object Animal Mammal Cat

Substitutability Principle
• We say: any subclass object (e.g., Jeep) is-a instance of a

superclass object (e.g., Car), and inherits its states and

behaviors

• Wherever we see a reference to a Car (superclass) object in

our code, we can legally replace that with a reference to Jeep

(any subclass object)

• Implies that we can substitute the subclass object in any way

that’s legal for the superclass

6

is-a

Jeep

Car

Given that background, … back to Polymorphism

• General rule about this in Java is:

 if the variable being assigned (or parameterized) is a MORE general version of the
original, then it is allowed.

 Likewise, you CANNOT refer to a general object as a more specific type.

 e.g., If I say give me an animal, you can give me a cat (no problem). but if I say give
me a cat, you cannot give me any Animal.

7

What is a Vector?
A specific type of List

8

What is a Vector?

• Our first specific type of List

• Motivation for creating a Vector?

 Make arrays a bit better

 Arrays have a fixed size

 Vector: Would be nice if I could just
add elements at will and the array
would grow automatically

 Arrays need a specific size

 Vector: No need to specify a size when
creating the list (I may not know yet)

• Vector:

 A resizable array

 Automatically grows and shrinks as you
add or remove items

 In reality: simulates this using fixed size
arrays

9

Imports

• Java has two primary built in vector classes you can use:

 Vector (import java.util.Vector) and

 ArrayList (import java.util.ArrayList)

 Can use: import java.util.* (This means you import ALL of java.util)

 See the Java API for list of methods!

10

Java Built-in Vectors

• Notice the data types are different

• We’ll discuss this on Friday (“Generics”)

11

Vector Basics

• size: an attribute (simple variable)

 The number of elements that have been added to the Vector

 [Used when simulating a Vector using an array as the underlying data structure]

• capacity: an attribute (simple variable; can be a constant)

 The size of the underlying array (maximum number of elements it can contain)

 Note: size <= capacity

 [Used when simulating a Vector using an array as the underlying data structure]

• resize(): a method

 A private method that doubles the size of the underlying array

 This allows the Vector to grow automatically (when needed)

 Automatically invoked when underlying array fills up
12

Vectors in General

• If building your own Vector, you would have to build the following (from List interface):

• For now, let's suppose this Vector stores doubles only (will change in a bit)

• find() – finds the index of value in the Vector (represented by an array “theList”)

13

Vectors in General

• setAt() – write a value to a particular index location in the Vector

• getAt() – get the item at the specified index in the Vector

14

Vectors in General

• resize() – doubles the size of the underlying array (has to make a new one!)

15

• insert(double value) –
insert at the end

• insert(double value, int index) –
insert at the specified index

• remove(double value) –
finds and removes the value from the
list

16

Vectors in
General

Vector Strengths

• Programmer does NOT need to worry about size of list. The list grows and shrinks

automatically

• Still very fast (constant time) to access a specific element of the list because array get (e.g.,

theList[i]) is a fast operation

• VERY fast (constant time) if inserting / removing from the back of the list

• Works well with cache because arrays stored contiguously in memory

17

Vector Weaknesses

• Takes up more space than is actually being used (most of the time).

 Remember, size is not the same as capacity, but the space taken is always the capacity

 i.e., the size is almost always less than the capacity

• Slow (linear time) if inserting or removing from indices NOT at the back of the list

because the vector has to shift everything else one spot to account for the change

• Slow (linear time) every once in a while when the vector needs to grow.

18

