
CS 2100: Data Structures & Algorithms 1

List, Interfaces, and Polymorphism

Dr. Nada Basit // bas i t@v i rg in ia . edu

Spring 2022

Friendly Reminders

• Masks are required at all times during class (University Policy)

• If you forget your mask (or mask is lost/broken), I have a few available

 Just come up to me at the start of class and ask!

• No eating or drinking in the classroom, please

• Our lectures will be recorded (see Collab) – please allow 24-48 hrs to post

• If you feel unwell, or think you are, please stay home

 We will work with you!

 At home: eye mask instead! Get some rest ☺

2

What is a List?

3

Java Collections Framework (JCF)

• Java has several frameworks, one of them is called “Collections” – Java Collections

Framework

• These are classes and libraries, etc that support “containers” for storing items

• The JCF has three (3) fundamental types:

 List: stores objects in order (just like arrays)

 Set: Stores unique set of objects (no duplicates)

 Map: Stores key/value pairs (like Python dictionaries)

• Choose the right container to match your application!

4

What is a List?

• A data model that maintains order as items are added

• A collection of items (Arrays are an example):

 Indexed in order from 0 to n-1

 Allows for positional access (access anywhere in the list via the index)

 Can use standard for-loop or for-each loop to traverse the structure

 Can add things to the list, remove things, find things, etc.

• In order to use, programmer doesn't need to know how the list is implemented

• Several different implementations:

 Each has strengths / weaknesses

 Need to understand inner workings to pick best type of list

5

Lists

• The idea of a list is ABSTRACT

• There are concrete implementation classes that

implement list

 E.g.
ArrayList, LinkedList, Array, Vector

6

Abstract Data Types &
Interfaces

7

What is an Abstract Data Type (ADT)?

• An abstract data type (ADT) is:

 A high-level description of a data structure

 A description of the methods and what they do

• Does not include:

 Specifics about HOW that structure is implemented (but usually in API if you read
closely)

 Specifics about efficiency of methods

• List is our first ADT

8

Another example of an ADT…. Queue!

• A Queue is another example of an ADT because it could be

implemented in more than one way

9

What is something these things all have in common?

They share a common INTERFACE

11

What is an interface?

12

Java Allows you to Define Interfaces

• Using standardized plugs and outlets allows reuse of the power network by any

electrical device

• A device implementing a standard North American plug is “ ” to support

120V AC (what the power network supplies)

• Defining an allows reuse of algorithms and code

• A class that implements an interface is “promising” (contract) to support methods

defined in the interface

(set of methods that any implementing class MUST include)

13

Java Interface

• Notice that when describing a List, we know some the operations:

 insert element at end of list

 insert at specific index of list

 get element at specific index of list

 find element in the list

• But we DO NOT describe how these are accomplished

 Java allows you to describe this using interfaces

14

E
xa

m
pl

e
of

 J
av

a
In

te
rf

ac
e:

L

IS
T

15

Java List API

• Note that Java already has a List Interface:

 https://docs.oracle.com/javase/8/docs/api/java/util/List.html

• You can (and should) check that out on your own time!

16

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Implementation of an actual List

• A class that IS a List

• The “implements” keyword means this object is a List

 It MUST contain and implement all of the methods in the List

Implementing an interface allows a class to become more formal about the
behavior it promises to provide. Interfaces form a contract between the class and
the outside world, and this contract is enforced at build time by the compiler.

If your class claims to implement an interface, all methods defined by that
interface must appear in its source code before the class will successfully compile.

17

Implementation of an Actual List:
Vector class

18The interfaceThe Vector class the promises to include all the methods in List (methods)

Run-time Polymorphism
(Scary term – yet straightforward concept!)

19

Example of run-time polymorphism we’ve seen before

• Remember this? This is also an example of run-time polymorphism. Can you spot where?

20

Why use Interfaces?

• What benefit do we get?

 The primary benefit is polymorphism

• Polymorphism is a feature of object oriented languages (like Java) in which type
substitutions can be made at runtime.

 It is the different effects of invoking the same method on different types of objects

 Java asks “who are you?” (“what is your data type?”)

 At run-time, Java calls the appropriate method

 Could be many methods of the same name in different classes

 Java provides this through and

• For example, if we want to write code to sort lists, why write a sorting method for each
type of list?

 Would be better if we had a generic sorting method for ALL lists

 Then, anything that IS a list is sorted the exact same way.
21

Polymorphism Example: Object Array

• Assume we have an Array of type Object:

Object[] myArray = new Object[4];

myArray[0] = 1; // add int

myArray[1] = “hello"; // add String

myArray[2] = new Object(); // add Object

myArray[3] = new Card(3, “Hearts”); // add Card

What will the following print?

for(int i = 0; i < myArray.length; i++)

System.out.print(myArray[i] + “ ”);
22

Polymorphism Example: Object Array

1 hello java.lang.Object@27c170f9 3 of Hearts

Each element in the array is an Object reference variable

• We call toString() on the Object reference

• At run-time, Java calls the correct toString() on the sub-class

•

23

Polymorphism Example: Animal and Cat
public interface Animal {

public void makeSound();

public void eat();

public void sleep();

}

public class Cat implements Animal {

public void makeSound() {

S.O.P(“Meow!”);

} // assume eat() & sleep() exist too

}

public class Dog implements Animal {

public void makeSound() {

S.O.P(“Woof!”);

} // assume eat() & sleep() exist too

}

public class TestAnimal {

public static void main(String

args[]) {

//Create Cat and Dog

Cat mittens = new Cat();

Dog fido = new Dog()

mittens.makeSound();

fido.makeSound();

}

)

OUTPUT: Meow!

Woof!

(Assume the rest of the Cat and Dog class is implemented)

Polymorphism Example: Vector

• A Vector is a kind of List

because the Vector class

implements the List interface.

25

Reminder to use:
Java API
When you are stuck, the Java API is a great resource to use!

26

Using the Java API

• Documentation of Java classes, methods, etc.

 VERY useful for discovering what functionality already exists in Java and how to use it.

• Some examples:

 Object: https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

 Scanner: https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

 String: https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

 ArrayList: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

27

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

