
A variable is simply a name associated with a reserved area allocated in memory. Think of it as a

named box in memory that contains data.

 Green box: Reserved Area, called “num” (value=50)

RAM:

 int num = 50; // Here “num” is the variable, storing the numerical value 50.

There are three main types of variables in Java.

• LOCAL VARIABLES – Similar to how an object stores its state in fields/attributes, a method will

often store its temporary state in local variables. The syntax for declaring a field is the same for

declaring a local variable (more on declaration below.) There is no special keyword necessary

when declaring a local variable. A local variable is identified entirely from the location in which

the variable is declared – which is between the opening and closing braces (“{“ and “}”)of a

method. Local variables are only visible to the methods in which they are declared; they are not

accessible from the rest of the class.

• INSTANCE VARIABLES (NON-STATIC FIELDS) – Technically, objects store their individual states in

"non-static fields", that is, fields declared without the static keyword. Non-static fields are

also known as instance variables because their values are unique to each instance of a class (to

each object, in other words). They are declared inside the class but outside any method.

Example: the computingID of one student is independent from the computingID of another.

• CLASS VARIABLES (STATIC FIELDS) – A class variable is any field declared with the static modifier;

this tells the compiler that there is exactly one copy of this variable in existence; regardless of

how many times the class has been instantiated. A static variable cannot be local.

Example: A field defining the number of gears for a particular kind of bicycle could be marked

as static since conceptually the same number of gears will apply to all instances. The code

static int numGears = 6; would create such a static field.

50

The Java programming language is statically-typed, which means that all variables must first be

declared before they can be used. This involves stating the variable’s type and name, such as:

int radius = 5;

The above statement tells the program that a field named “radius” exists, holds numerical data (int

stands for integer value), and has an initial value of “5.” A variable's data type determines the values it

may contain, plus the operations that may be performed on it. In addition to int, the Java

programming language supports seven other primitive data types. Other than primitive data types,

Java supports what are known as reference/object data types.

A primitive type is predefined by the language and is named by a reserved keyword. There are eight

primitive data types supported by Java:

• BYTE:

• Byte data type is an 8-bit signed two's complement integer.

• Minimum value is -128 (-27); Maximum value is 127 (inclusive)(27 -1).

• Default value is 0.

• Byte data type is used to save space in large arrays, mainly in place of integers, since a byte

is four times smaller than an int.

• Example: byte a = 100; byte b = -50;

• SHORT:

• Short data type is a 16-bit signed two's complement integer.

• Minimum value is -32,768 (-215); Maximum value is 32,767 (inclusive) (215 -1).

• Short data type can also be used to save memory as byte data type. A short is 2 times

smaller than an int.

• Default value is 0.

• Example: short s = 10000; short r = -20000;

• INT:

• Int data type is a 32-bit signed two's complement integer.

• Minimum value is - 2,147,483,648.(-231); Maximum value is 2,147,483,647(inclusive).(231 -1).

• Int is generally used as the default data type for integral values unless there is a concern

about memory.

• The default value is 0.

• Example: int a = 100000; int b = -200000;

• LONG:

• Long data type is a 64-bit signed two's complement integer.

• Minimum value is -9,223,372,036,854,775,808 (-263).

• Maximum value is 9,223,372,036,854,775,807 (inclusive) (263 -1).

• This type is used when a wider range than int is needed.

• Default value is 0L.

• Example: long a = 100000L; long b = -200000L;

• FLOAT:

• Float data type is a single-precision 32-bit IEEE 754 floating point. ±3.4x1038

• Float is mainly used to save memory in large arrays of floating point numbers.

• Default value is 0.0f.

• Float data type is never used for precise values such as currency.

• Example: float f1 = 234.5f;

• DOUBLE:

• double data type is a double-precision 64-bit IEEE 754 floating point. ±1.7x10308

• This data type is generally used as the default data type for decimal values.

• Double data type should never be used for precise values such as currency.

• Default value is 0.0d.

• Example: double d1 = 123.4;

• BOOLEAN:

• boolean data type represents one bit of information.

• There are only two possible values: true and false.

• This data type is used for simple flags that track true/false conditions.

• Default value is false.

• Example: boolean found = true;

• CHAR:

• char data type is a single 16-bit Unicode character.

• Minimum value is '\u0000' (or 0).

• Maximum value is '\uffff' (or 65,535 inclusive).

• Char data type is used to store any character.

• Example: char letterA ='A';

In addition to the eight primitive data types listed above, the Java programming language also

provides special support for character strings via the java.lang.String class. Enclosing your

character string within double quotes will automatically create a new String object.

Example: String s = "this is a string";.

String objects are immutable, which means that once created, their values cannot be changed. The

String class is not a primitive data type despite the special support given to it by the language.

Reference variables are created using defined constructors of the classes (a discussion on constructors

will come later). They are used to access objects. These variables are declared to be of a specific type

that cannot be changed. For example: Employee, Cat, Student, etc. More information on reference

data types:

• Class objects, and various types of array variables come under reference data type.

• Default value of any reference variable is null.

• A reference variable can be used to refer to any object of the declared type or any compatible

type.

• Example: Animal animal = new Animal("giraffe");

(This line of code will become clearer after a discussion on declaration of objects and class

constructors)

Data Type Default Value (for fields) Size

byte 0 1 byte

short 0 2 bytes

int 0 4 bytes

long 0L 8 bytes

float 0.0f 4 bytes

double 0.0d 8 bytes

char '\u0000' 2 bytes

String (or any object) null /

boolean false 1 bit

It's not always necessary to assign a value

when a field is declared. Fields that are

declared but not initialized will be set to a

reasonable default by the compiler. Generally

speaking, this default will be zero or null,

depending on the data type. Relying on such

default values, however, is generally

considered bad programming style.

A literal is a source code representation of a fixed value. They are represented directly in the code

without any computation. Literals can be assigned to any primitive type variable. For example:

• byte a = 68;

• char capitalC = 'C';

• short s = 10000;

• boolean result = true;

• int i = 100000;

• int decimal = 100; // base 10

• int octal = 0144; // octal (base 8) – prefix 0

• int hexa = 0x64; // hexadecimal (base 16) – prefix 0x

• double d1 = 123.4;

• double d2 = 1.234e2; // same value as d1, but in scientific notation

• float f1 = 123.4f;

• String s1 = “Hello World”; // String literal

• String s2 = “two\nlines”; // notice the “escape sequence” \n

• String s3 = "\"This is in quotes\""; // notice the “escape sequences” \"

• char x = ‘\u0001’; // char types of literals can contain any Unicode character

• String z = “\u0001”; // String types also

Before a value can be stored in a variable, the value’s data type must be compatible with the variable’s

data type. Java performs some conversions between data types automatically, but does not

automatically perform any conversion that can result in the loss of data. Java also follows a set of

rules when evaluating arithmetic expressions containing mixed data types.

Primitive data type ranking (Highest to lowest)

double, float, long, int, short, byte

In assignment statements where values of lower-ranked data types are stored in variables of higher-

ranked data types, Java automatically converts the lower-ranked value to the higher ranked type.

For example:

• double d1;

• int x = 123;

• d1 = x;

Works just fine, while:

• double d1 = 123.4;

• int x;

• x = d1;

Will cause an error. In order for something like this to work we need to tell Java that we understand

we are losing precision. This is called casting. Most of the time when you cast you will be going from

a double to an int. For example:

• double d1 = 123.7;

• int x;

• x = (int)d1;

After these 3 lines are executed x will contain the value 123, notice that it will truncate the number (it

does not round).

When both operands of the division operator are integers, the operator will perform integer division.

This means the result of the division will be an integer as well. If there is a remainder it will be lost.

For example:

• double d1;

• d1 = 5/4;

What value will be stored in d1? Because both 5 and 4 are int literals Java will perform integer

division and store 1 in d1 not the expected 1.25. It doesn’t matter that d1 is a double above because

Java removes the fraction part before the assignment is made. In order for the above assignment to

work as expected we need to change either the 5 or 4 or both to a floating point number, for example:

• double d1;

• d1 = 5.0/4;

or

• double d1;

• d1 = 5/4.0;

or

• double d1;

• d1 = 5.0/4.0;

Will all assign 1.25 to d1. The reason the first two work is that Java converts the int value to a double

(see above). Note also that we can cast to avoid integer division as well, for example:

• int x = 10, y = 4; // notice the use of the comma to indicate x & y are ints

• double d1;

• d1 = (double)x / y;

or

• int x = 10, y = 4;

• double d1 = x / (double)y;

Will store 2.5 in d1. Note that the following will not store 2.5 in d1.

• Int x = 10, y = 4;

• double d1;

• d1 = (double)(x/y)

as Java will do integer division on the x and y before casting.

Java language supports few special escape sequences for String and char literals. They are:

Notation Character represented

\n Newline (0x0a)

\r Carriage return (0x0d)

\f Formfeed (0x0c)

\b Backspace (0x08)

\s Space (0x20)

\t tab

\" Double quote

\' Single quote

\\ backslash

\ddd Octal character (ddd)

\uxxxx Hexadecimal UNICODE character (xxxx)

