
UNIVERSITY OF VIRGINIA, DEPARTMENT OF COMPUTER SCIENCE

BSTs - Tree Implementation

Nada Basit and Mark Floryan

February 22, 2022

1 SUMMARY

For this homework, you will be implementing two classes to create a working Binary Search
Tree. You will start by implementing a basic Binary Tree with the three tree traversals covered
in class. Then, you will implement and test a working Binary Search Tree.

1. Download the provided starter code. You can ignore the AVLTree class. You will be
using that one next week.

2. Implement some general methods in the BinaryTree class.

3. Implement the BinarySearchTree class

4. Use the provided tester files to verify your implementation works. Note that you should
test your code more so than the provided tester does this time. The tester is NOT as
thorough as in previous homeworks.

5. FILES TO DOWNLOAD: BinarySearchTrees.zip

6. FILES TO SUBMIT: BinaryTree.java, BinarySearchTree.java

1

https://uva-cs.github.io/dsa1/homeworks/BinarySearchTrees/code/BinarySearchTrees.zip


1.1 BINARYTREE.JAVA

To begin, implement the BinaryTree class. These are methods that are useful for ANY binary
tree (whether balanced or not). You will need to implement the following methods (NOTE:
These methods DO NO print anything, they return the traversals as a string.):

1 public class BinaryTree <T>{
// Returns a string representing the tree nodes

3 //given as an in-order traversal
//All on one line , space separated

5 private String getInOrder(TreeNode <T> curNode );

7 // Returns a string representing the tree nodes
//given as an in-order traversal

9 //All on one line , space separated
private String getPreOrder(TreeNode <T> curNode );

11

// Returns a string representing the tree nodes
13 //given as an in-order traversal

//All on one line , space separated
15 private String getPostOrder(TreeNode <T> curNode );

}

The Binary Tree contains a few methods that are implemented for you. This includes the
main traversal functions, that simply call the helper functions described above on the root
to kick off the recursive traversals. In addition, a method called printTree() is provided that
prints the tree in a somewhat formatted method. This may be useful when debugging your
code. Lastly, a simple recursive method that computes the height of the binary tree is pro-
vided as an example of recursion in trees.

1.2 BINARYSEARCHTREE.JAVA

Next, you will implement a binary search tree. This class will extend the binary tree class from
earlier, and thus inherit the traversal methods defined earlier. Your binary search tree should
implement the provided Tree interface, shown below.

public interface Tree <T extends Comparable <T>> {
2

// remember to IGNORE DUPLICATES
4 public void insert(T data);

6 public boolean find(T data);

2



8 public void remove(T data);
}

10

/* You BST implements the interface above */
12 public class BinarySearchTree <T extends Comparable <T>>

extends BinaryTree <T> implements Tree <T>{
14

//TODO: Implement this class
16 }

You may add other supporting methods to your binary search tree if you find that to be help-
ful.

1.3 TESTING YOUR CODE

Once you are done, you can look at the provided tester file. This tester is VERY minimal
and only checks one single test case, providing you with the expected output. You can (and
should) create more tests and manually check them to ensure your tree is operating cor-
rectly.

You should submit two files for this homework: BinaryTree.java, and BinarySearchTree.java.

1.4 GRADESCOPE

You should submit your code to Gradescope. If you are having trouble with your submission,
you should double check the following common problems:

1. Make sure you are only submitting the two requested files, and they are named Binary-
Tree.java and BinarySearchTree.java exactly.

2. Make sure you keep any package statements in your code before submitting. The auto-
grader expects your files to have the package statements that are provided in the down-
loaded project.

3. Make sure your output is in the correct format. You should not be printing ANYTHING
else or the autograder will think your output is incorrect.

3


	Summary
	BinaryTree.java
	BinarySearchTree.java
	Testing your code
	Gradescope


