
UNIVERSITY OF VIRGINIA, DEPARTMENT OF COMPUTER SCIENCE

AVL - Tree Implementations

Nada Basit and Mark Floryan

February 22, 2022

1 SUMMARY

For this homework, you will be extending your Binary Search Tree to include tree rotations,
and self-balancing. You will implement a few methods to complete this AVL Tree.

1. Grab your working code from the Binary Search Trees assignment (the project / starter
code is the same).

2. Implement the missing methods in the AVLTree class (some of this is done for you to
simplify the assignment)

3. Use the provided tester files to verify your implementation works. Note that you should
test your code more so than the provided tester does this time. The tester is NOT as
thorough as in previous homeworks.

4. FILES TO DOWNLOAD: None, but use your code from the previous assignment for this
one.

5. FILES TO SUBMIT: BinaryTree.java (from last week), BinarySearchTree.java (from last
week), AVLTree.java (new)

1



1.1 AVLTREE.JAVA

You will implement an AVL tree that inherits from your binary search tree. An AVL tree can
take advantage of the insert and remove methods from the class it inherits from (i.e., Binary-
SearchTree.java). Thus, to insert into an avl tree, you can call super.insert() and then simply
check if the current node needs to be balanced. Some of this implementation is provided for
you, but you will have to implement the following methods yourself:

1 public class AVLTree <T extends Comparable <T>>
extends BinarySearchTree <T>{

3

// Insert and remove
5 protected TreeNode <T> insert(T data , TreeNode <T> curNode );

protected TreeNode <T> remove(T data , TreeNode <T> curNode );
7

9 // figures out whether a double or single rotation is
// needed and in which direction(s)

11 private TreeNode <T> balance(TreeNode <T> curNode );

13 // rotate right on the curNode provided
private TreeNode <T> rotateRight(TreeNode <T> curNode );

15

// rotate left on the curNode provided
17 private TreeNode <T> rotateLeft(TreeNode <T> curNode );

19 // compute the balance factor of the given node
private int balanceFactor(TreeNode <T> node);

21

}

1.2 TESTING YOUR CODE

Once you are done, you can look at the two provided tester files to check your implemen-
tation. As stated earlier, these files do not rigorously check your implementations, so you
should be writing your own test cases in addition to the few provided.

You should submit three files for this homework: BinaryTree.java, BinarySearchTree.java,
and AVLTree.java. The former two are resubmissions of your work from last week.

2



1.3 GRADESCOPE

You should submit your code to Gradescope. If you are having trouble with your submission,
you should double check the following common problems:

1. Make sure you are only submitting the three requested files, and they are named Bina-
ryTree.java, BinarySearchTree.java, and AVLTree.java exactly.

2. Make sure you keep any package statements in your code before submitting. The auto-
grader expects your files to have the package statements that are provided in the down-
loaded project.

3. Make sure your output is in the correct format. You should not be printing ANYTHING
else or the autograder will think your output is incorrect.

3


	Summary
	AVLTree.java
	Testing your code
	Gradescope


