UNIVERSITYsf VIRGINIA

C, Memory

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.
Assistant Professor

il UNTERSITY | ENGINEERING

il UNIVERSITYo VIRGINIA

Announcements

 Homework 8 due tonight on Gradescope

e Homework 9 available this atternoon

* Lab 10 tomorrow: Memory Errors

* Lab 11 next Tuesday (can check off for full credit by 12/5)

UNIVERSITY VIRGINIA

Common Memory Bugs (reading)
U shadd yeod 4t n detorl by lab andl will see o it
of these there.

UNIVERSITYf VIRGINIA

List Example
mokelist. dectimyist ond append.

You shadd hove seen all n the Tomework

D hawoler Hle. Cheth).

1. #ifndef _LIST_H__

#ifndef __ LIST H__
#define _ LIST H__

#ifndef means “if not defined.”

This checks whether the macro __LIST_H__ has not been defined
et.
typedef struct { Y

unsigned length; It is the start of an include guard, which prevents this header from

int *array;
} List;

void append(List *list, int item);

List *makeList();
void destroyList(List *);

#endif

s dhay B 0¥

being included multiple times.

2. #define __LIST_H__
This defines the macro _ LIST H_ .

Now the compiler knows that this header has been included
once.

Everything between this line and #endif will only be included

FGY | [I v VMM, Uﬂé‘t *]16‘(3) one time, even if you #include it repeatedly.

3. typedef struct {

This begins a structure definition.
typedef means you will give this struct a
type name (List) later.

4. unsigned length;

This declares a field named length.

Type: unsigned (same as unsigned int).

It stores the number of elements currently in
the list.

Because it is unsigned, it can never be
negative.

5. int *list;

This declares a field named list.

Type: int * — a pointer to an integer.
This pointer will point to a dynamically
allocated array of integers.

This is where the actual list elements are
stored.

6. void append(List *list, int item);

This is a function declaration.

Parameters:

List *list — a pointer to the list you want to modify.

int item — the integer to append.

Purpose: Append item to the end of the list.

7. List *makelList();

This is another function declaration.

Return type: List * — a pointer to a newly created list.
Purpose: Allocate a new List and initialize it.

8. void destroyList(List *);

Function declaration.

Returns nothing (void).

Parameter: a List * (the name is omitted, but the type is given).
Purpose: Free all memory used by a List.

9. #endif

This matches the #ifndef at the top.

It ends the include guard.

Ensures the header file is only included once during
compilation.

® het.c

Allocates enough memory for one List struct.

7 | Cast (List *) is unnecessary in C but not harmful.
#include "list.h" ret is a pointer to the newly allocated struct.
#include <stdlib.h>

Allocates storage for the array of integers.
List *makeList() { ret->length is 0, so this allocates 0 bytes.

List *ret = (List *) malloc(sizeof(List)); Legal: calloc(0, ...) usually returns NULL.
Prepares the list to grow later.

N

ret->length = 0;

ret->array = (int) calloc(ret->length, sizeof(int)); 5| Returns the pointer to the newly created
empty list.
return ret;
}

/.;| Frees the dynamically allocated integer array. |
void destroyList(V
free(list->array); —>| Frees the struct itself.
M After this, the list pointer is invalid.

}

[Increase length by 1 because we add one item. |

void append(List *list, int item

list->length += 1
element.

If old pointer was NULL (on first append), realloc(NULL
size) behaves like malloc(size).

/ Expands or creates the array so it can hold the new

list->array[list->length - 1] = item;

)
~[Writes the new element into the last position.
Example: if length = 2 after increment, last index = 1.

@) welist.c

#include "list.n" .
#include <stdio.h> /—>|Creates an empty list.

int main() { Adds two integers to the list.
List "myList = makeList(); 7| after this

i length =2
append(myList, 42); array = {42, 3}

append(myList, 3);
,_//?| Prints the memory address of myList.|
| printf("%p\n", myList); |//_/—

Loops over each element and prints it. |
for(int i = O; i < myList->length; i++) {
printf("%d ", myList->arrayl[i]);

} //—7';|\A${’ wod A new e,

1

| —

Frees array and struct.

return O;

}

UNIVERSITYsfVIRGINIA

0 mon man - Ose fir the manual on the magual

©. synepsis. en short overnaw -
5. somethig wndlerled, 76 firkeng 74 back. tn samethig ot the +op.

® Its dided 1 gectinns andl. there ore 4 sectime of £ Mmool
| More on man pages
© Mustly goy to b2 M cectin 2. ([Labiony @als) |

¢ Emmpl@s qo how 1o e the 1mon

9" dodh fr word. Jexomple” it wil frd examplemn bhe g2 wil be the

noxt ond ‘It s the prerigus one.
@ 40 "man padf " mon 2 prctE (chady the prntf @t 30 then @ach for

O K @s,\u]ow N vl Qomz expmPES. Printt.

B, I we not quite sure whot yodte feaeg fir, yse “k' todo lower searchos,

UNIVERSITY VIRGINIA

@, mon - ”qué ot (ﬁm fhe nstuctien using %{vjwwd) _ Vé@ foct
it alls ot come nfor matin of e ot fiee: <qrt fuaction.

(1D, man S%rb This s the funcHon of Square rost -
D). mon -f s equivalent Jo “whabis (1 know what I want, fox comple, T want

fo check pnnf{ME%cﬂ%Qn (magrgwpgges
@‘ A K SQWC}\ ol HhVﬁ! n man, ‘HTW{ \A/here Hﬁs l/LA7r0{ a,FPgﬂuﬂg‘ ([/6,,\,/] Q)OW)‘

Al the proesses uamrg on the maching = ps = A | less
How many #hings aie umng 2 ps -Alwe -1 (Allof them hawe o View of

UNIVERSITYsf VIRGINIA

> memon| as i Hey were e Y progran
Wﬂm% n mem%~

Process - approximately what we think of as a “running program”

Processes

- Operating System effectively has a giant array of processes started
since computer turned on

- Try ps -A
- Has access to all memory (but only its own!)

-+ Operating System maintains data structure about each process

- What program is running, who ran it, when it started, ...
- Array of “file like objects”

