UNIVERSITYsf VIRGINIA

C Introduction

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.
Assistant Professor

il UNTERSITY | ENGINEERING

UNIVERSITYsf VIRGINIA

Announcements

 Homework 8 released today, due next Monday on Gradescope

UNIVERSITYsf VIRGINIA

Switch

UNIVERSITYsf VIRGINIA

Calling Functions

The C code
long a = £(23, "yes", 34ul);
compiles to

movl $23, Y%edi

leaq label of yes_string, %rsi
movq $34, Yrdx

callq f

Jrax is "long a" here

without respect to how £ was defined. It is the calling convention,
not the type declaration of £, that controls this.

il UNIVERSITYo VIRGINIA

Calling Functions

But, if the C code has access to the type declaration of £, then it
might perform some implicit casting first; for example, if we

declared

long f(double a, const char *b, double c);
long a = £(23, "yes", 34ul);

then the call would be interpreted by C as having implicit casts in it:
f ((double)23, "yes", (double)34ul);

long a

UNIVERSITYsf VIRGINIA

Calling Functions

and the arguments would be passed in floating-point registers, like
SO:

movl $23, Jeax
cvtsi2sd %eax, %xmmO # first floating-point argument

leaq label of yes_string, %rdi # first integer/pointer argument

movl $34, Yeax
cvtsi2sd %eax, J%xmml # second floating-point argument

callq f
Jrax is "long a" here

UNIVERSITYsf VIRGINIA

Functions Declaration

int f(int x);
- Declaration of the function
- Function header
- Function signature
- Function prototype

We want this in every file that invokes £ ()

UNIVERSITYsf VIRGINIA

Functions Definition

int f(int x) {
return 2130 * x;
}

- Definition of the function
We only want this in one .c file
- Do not want 2 definitions
- Which one should the linker choose?

UNIVERSITYsf VIRGINIA

Header Files

C header files: .n files
- Written in C, so look like C
- Only put header information in them

- Function headers
- Macros

= typedefs

— struct definitions

- Essentially: information for the type checker that does not
produce any actual binary

- #include the header files in our .c files

UNIVERSITYsf VIRGINIA

Big Picture

Header files
- Things that tell the type checker how to work
- Do not generate any actual binary

C files
- Function definitions and implementation

- Include the header files

UNIVERSITYsf VIRGINIA

Including Headers

#include "myfile.h"
- Quotes: look for a file where I'm writing code
- Our header files
#include <string.h>
- Angle brackets: look in the standard place for includes
- Code that came with the compiler

- Likely In /usr/include

UNIVERSITYsf VIRGINIA

Macros

#define NAME something else

- Object-like macro

- Replaces NAME In source with something else
#define NAME(a,b) something b and a

- Function-like macro

- Replaces NAME(X,Y) with something Y and X

Lexical replacement, not semantic

UNIVERSITYsf VIRGINIA

Interesting Example

#define TIMES2(x) x * 2 /* bad practice */
#define TIMES2b(x) ((x) * 2) /* good practice */
int x = ! TIMES2(2 + 3);
int y = ! TIMES2b(2 + 3);

UNIVERSITYsf VIRGINIA

Examples and More

- header example

* string.h

- variadic functions

UNIVERSITYsf VIRGINIA

Memory

UNIVERSITYsf VIRGINIA

The Heap

The heap: unorganized memory for our data
- Most code we write will use the heap
- Not a heap data structure...

il UNIVERSITYo VIRGINIA

The Heap: Requesting Memory

void *malloc(size t size);

- Ask for size bytes of memory
- Returns a (void *) pointer to the first byte
- It does not know what we will use the space for!

- Does not erase (or zero) the memory it returns

UNIVERSITYsf VIRGINIA

malloc Example

typedef struct student_s A
const char x*name;
int credits;

} student;

student *enroll (const char *name, int transfer credits) {
student *ans = (student *)malloc(sizeof (student)) ;

ans->name = name,
ans->credits = transfer credits;

return ans;

}

UNIVERSITYsf VIRGINIA

The Heap: Freeing Memory

Freeing memory: free

void free(void x*ptr);

- Accepts a pointer returned by malloc
- Marks that memory as no longer in use, available to use later
- You should free() memory to avoid memory leaks

UNIVERSITYsf VIRGINIA

Page 20

UNIVERSITYsf VIRGINIA

An Interesting Stack Example

int *makeArray () {
int answer [5];
return answer,;

}

void setTo(int *array, int length, int value) {
for(int i=0; i<length; i+=1)
array[i] = value;

}

int main(int argc, const char *argv[]) {
int *al = makeArray();
setTo(al, 5, -2);
return O;

}

UNIVERSITYsf VIRGINIA

Page 22

