UNIVERSITYsf VIRGINIA

X86 64

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.
Assistant Professor

il UNTERSITY | ENGINEERING

UNIVERSITYsf VIRGINIA

Announcements

 Homework 5 available today, due Monday at 11:59pm on

Gradescope

» Exam 1 scores released

UNIVERSITYs VIRGINIA

Exam 1 Scores

20] 40 50 &0 L B0 %0 100

Mean Median
Overall | 68.92 70.0

Suspected Gen Al use on HW3 | 64.55 63.0
No suspected Gen Al use on HW3 | 7018 73.0

UNIVERSITYsf VIRGINIA

AT&T x86-84 Assembly

instruction source, destination

- Instruction followed by 0 or more operands (arguments)

. : ol we will nat see
4, types of operands: (fypicolly ot 2>
- Number (immediate value):($0x123
- Register:(%rax

- Address of memory: (%rax) or 24 or labelname
lood g

%\Q (10\6“ 0%

Value at an address|in memory: (%rax) or 24 or labelname
Iammiofﬁh wses , e are dmg &me@31MWg
fd\é\/{)\(me Frce T%Y

s

UNIVERSITYsf VIRGINIA

AT&T x86-84 Assembly

mylabelnamel) gnl yith o colon
- Label - remember the address of next thing to use later

@something something <l yAth o clot
+ Metadirective - extra information that is not code
- How the code works with other things (i.e., talk to OS)
- EX: .globl main

@We can have comments!

UNIVERSITYsf VIRGINIA

Addressing Memory
ol C /" ek
2130(%rax, %rsp, 8) %
- Address can have up to 4 parts: 2 numbers, 2 registers [T

- Combines as:\2130 + %rax + (%rsp * 8)
- Common usage from this example:
- rax - address of an object in memo

- 2130 - offset of an array into the object

- rsp - index into t
- 8 - size of the values in the array (yed o alelode, the offeet ?

on't . (Y%rax) or (hrax, 4) or 4(%rax) I 1 doit foe all the

- This is alllone operand (one memory address) piees, i will - colaulate
whed 1t @n.

UNIVERSITYsf VIRGINIA

Registers

rax is a 64-bit register Cmppwge&(0o be b?\cfQWaW)(s Wwﬁb[& With #8h (52-b7%), [bbit,

vOF (i bits) eop (22 bits) Lt -bit)

| (|
ah ol (§bits fr eoh)
T0 1 lokot 32-bit verdon, # will Just 2 ot te fop 32 bits.
W'l see His with all ow registers, n shghtly different uay.

Cthedk the Terdn9))

UNIVERSITYsf VIRGINIA

Instructions (oyt ACroNYs Ny it we wont 10 do ke mov gdd, and, or | xor, =,

Instructions have different versions depending on number of bits
to use

* movq - 64-bit move (Qﬁ/mlo\k 1%\/ MU{@ ,ﬂ,{bq])

ca-auadword o ctnection Pllosed by fes wide
* movl - 32-bit move of tho 409 WL WAL 0 dlo.
-1 =long

- There are encodings for shorter things, but we will mostly see
32- and 64-bit

UNIVERSITYsf VIRGINIA

More powerful than our ISA

Instructions can move/operate between memory and register
* movq %rax, %rcx - register to register

- Remember our icode 0

- movq (%rax), %rcx - memory to register
- Remember our icode 3

- movq %rax, (%rcex) - register to memory
- Remember our icode 4

- movq $21, %rax - Immediate to register

- Remember our icode 6 (b=0) We amat do memory o
Note: at most one memory address per instruction nemon calculadioms

Page 22

UNIVERSITYsf VIRGINIA

Other Instructions

Other instructions work the same way

o SIL -, dast
addq ‘hrax, %rcx — rcx +=rax

+ subg (%rbx), %rax — rax -= M[rbx]
1 g o memay andl getr Hhe Lalie

0
- XOr, and, ang others work the same way!
- Assembly has virtually no 3-argument instructions

- All will be modifying something (i.e., +=, &=, ...)

oty ove. of e wmpus chiectly, doesrt hae a. sepeiie b

UNIVERSITYsf VIRGINIA

Load Effective Address

Tin n gy o the mamony| Jen 4s o special nsticton
Ehot caliulodes the
memay odres prdl

- Performs memory address calculation store the. mermny acklexs
ilsdf na regster.

- Stores address, not value at the address in memory

Load effective address: 1leaqg 4(%rcx), %rax
2649 Slen)y bl

\Vi
Yvoor = Lrch+4

UNIVERSITYsf VIRGINIA

Jumps
jmp foo
- Unconditional jump to foo
(f00) | r memo
- Need jmp* to use register value (1o o e n o egister)
Conditional jumps @Q@A ﬁlf theie’s o overflow
*JL Jle, je, jme, jg jge, Ja, jb, Js,]
< <= == = 7 77 obe B L e o pigred bit
Unlike our Toy ISA, these do not compare given register to 0 i st

Page 11

UNIVERSITYsf VIRGINIA

Jumps P medon the Veclt %ﬁ QNG <A 10g3PKe oled_cndiBm e

Condition codes - 4 1-bit registers set by every math operation,
cmp, and test

- Result for the operation compared to 0 (if no overflow)

- Example: T\ﬂ% At howe 40 be back 4 bace.

addq $-5, r .
mﬁt dossn't set condition codes..—> 04 Ca/ ol gg{r\g{'}'\m fiee move
je foo jumpuil ke baced on the mast: vecont thing it Jch/ﬁS arowd.

ST get the condittion Goole.
- Sets condition codes from doing math (subtract 5 from rax)

- Tells whether result was positive, negative, 0, if there was
overflow, ...

- Then jump If the result of operation should have been =0

UNIVERSITYsf VIRGINIA

Jumps: compare...

cmpq Arax, %rdx
- Compare checks result of == and sets condition codes
- How rdx - rax compares with 0
- Be aware of ordering!

- If rax IS bigger, sets < flag
- if rdx Is bigger, sets > flag

UNIVERSITYo VIRGINIA

Jumps: ... and test

testq %rax, ’%rdx
- Sets the condition codes based on rdx & rax
- Less common

Neither save their result, just set condition codes!
tost cold ke used H thect i o vegister has 0 it

1@&:@ AINK, 7 1A
e zen_0se JJ3f =29

dne ponzenn_ase if W (=0

UNIVERSITYsf VIRGINIA

Example: Loops

men:, ——— IﬂHe

while (i < 10) mog $0, {vox) we set o =0 iy art i=0:
1+=1 : ! do
P anp $lo, Amrs Jyas-lo = { f YWIO,V[/;% ?M'ﬁ@n
;A/\O“H@ j@é Qﬁ'é}” 7’4F mK >=lo, we got pusitive o 0,
/! check Loondition , Junp aut addﬁz 4| }%m% then Fump ot the lop.
s i7=10) goto ond Jmp]NP
=1
) qump back £ corchion offer ey lretun witha 4’ beuise were wrerg with - b
q0 t JWF } it {%nﬂ (popa g-byte oddves ond Jump ikt aller)
Q(\d D& [ab/e

Page 15

UNIVERSITYsf VIRGINIA

Example: Functions

f(x,y): ik et 7, mty)
letum 4
eoe ﬁ
return 4 Wt oan (O 9
ant }:F(l(5)i
b
z = 1(2,5)

UNIVERSITYsf VIRGINIA

Function Calls: Calling Conventions

The fanchin I g ety and the

finctn that Lasll ave. th wig tre
sonfe. rggstere.

- Convention: Store arguments in registers and stack before call

callg myfun
- Push return address, then jump to myfun

- First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
- If more arguments, pushed onto stack (last to first)

retq

- Pop return address from stack and jump back

- Convention: store return value in rax before calling retq
This is similar to our Toy ISA’s function calls in homeworR 4

Moo ponvantions , chece vaadigs
Page 17

UNIVERSITYsf VIRGINIA

Calling Conventions: Registers

why 2 Galler and aollee ctore the same vepsters.
Calling conventions - recommendatlons for making function calls

- Where to put arguments/parameters for the function call?

- Where to put retur

- What happens to values In the registers?
(Wus the dd whies Tefve wlhg ©.7p theiohus MWQ femrmy.
- Callee-save - The function should ensure the values in

these registers are unchanged when the function returns
* rbx, rsp, rbp, r12, r13, r14 ri1b

— Caller-save - Before making a function call, save the value,
since the function may change it

Page 18

UNIVERSITYsf VIRGINIA

Most Common Instructions

ek =

- lea - load effective address

- call - push PC and jump to address
* add - +=

- cmp - Set flags as if performing subtract
* jmp - unconditional jump

- test - set flags as If performing &

- je - jJump Iff flags indicate == 0

- pop - pop value from stack

- push - push value onto stack

- ret - pop PC from the stack

UNIVERSITYsf VIRGINIA

Debugger

Debugger - step through code!
» You will be using this for lab 7
- Experience seeing results of these instructions step-by-step

- Please read the x86-64 summary reading before lab!

