UNIVERSITYsf VIRGINIA

X86 64

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.
Assistant Professor

il UNTERSITY | ENGINEERING

UNIVERSITYsf VIRGINIA

Announcements

 Homework 5 available today, due Monday at 11:59pm on

Gradescope

» Exam 1 scores released

UNIVERSITYs VIRGINIA

Exam 1 Scores

20] 40 50 &0 L B0 %0 100

Mean Median
Overall | 68.92 70.0

Suspected Gen Al use on HW3 | 64.55 63.0
No suspected Gen Al use on HW3 | 7018 73.0

UNIVERSITYsf VIRGINIA

AT&T x86-84 Assembly

instruction source, destination
- Instruction followed by 0 or more operands (arguments)
- 4 types of operands:

- Number (immediate value): $0x123

- Register: %rax

- Address of memory: (%rax) or 24 or labelname

- Value at an address in memory: (%rax) Or 24 or labelname

UNIVERSITYsf VIRGINIA

Addressing Memory

2130(%rax, %rsp, 8)
- Address can have up to 4 parts: 2 numbers, 2 registers
- Combines as: 2130 + %rax + (%rsp * 8)
- Common usage from this example:

- rax - address of an object in memory
- 2130 - offset of an array into the object
- rsp - index into the array

- 8 - size of the values in the array

- Don’t need all parts: (%rax) or (%rax, 4) or 4(Y%rax)

- This is all one operand (one memory address)

UNIVERSITYsf VIRGINIA

Registers

rax is a 64-bit register

UNIVERSITYsf VIRGINIA

Instructions

Instructions have different versions depending on number of bits
to use

* movq - 64-bit move
- q = quad word

- movl - 32-bit move
-1=1long

- There are encodings for shorter things, but we will mostly see
32- and 64-bit

UNIVERSITYsf VIRGINIA

More powerful than our ISA

Instructions can move/operate between memory and register
* movq %rax, %rcx - register to register

- Remember our icode 0

- movq (%rax), %rcx - memory to register
- Remember our icode 3

- movq %rax, (%rcex) - register to memory
- Remember our icode 4

- movq $21, %rax - Immediate to register

- Remember our icode 6 (b=0)
Note: at most one memory address per instruction

UNIVERSITYsf VIRGINIA

Other Instructions

Other instructions work the same way
- addq hrax, %Arcx — ICX += rax
- subq (%rbx), %rax — rax -= M[rbx]
- xor, and, and others work the same way!
- Assembly has virtually no 3-argument instructions

- All will be modifying something (i.e., +=, &=, ...)

UNIVERSITYsf VIRGINIA

Load Effective Address

Load effective address: leaq 4(%rcx), ‘%rax

- Performs memory address calculation

- Stores address, not value at the address in memory

UNIVERSITYsf VIRGINIA

Jumps

jmp foo
- Unconditional jump to foo
- foo IS a label or memory address
- Need jmp* to use register value
Conditional jumps

*Jl, Jjle, je, Jjme, Jg Jge, Ja Jb, Js, Jo

Unlike our Toy ISA, these do not compare given register to 0

UNIVERSITYsf VIRGINIA

Jumps

Condition codes - 4 1-bit registers set by every math operation,
cmp, and test

- Result for the operation compared to 0 (if no overflow)

- Example:
addq $-5, Yrax
// ...code that doesn't set condition codes...

je foo

- Sets condition codes from doing math (subtract 5 from rax)

- Tells whether result was positive, negative, 0, if there was
overflow, ...
- Then jump If the result of operation should have been =0

UNIVERSITYsf VIRGINIA

Jumps: compare...

cmpq Arax, %rdx
- Compare checks result of == and sets condition codes
- How rdx - rax compares with 0
- Be aware of ordering!

- If rax IS bigger, sets < flag
- if rdx Is bigger, sets > flag

UNIVERSITYsf VIRGINIA

Jumps: ... and test

testq %rax, ’%rdx
- Sets the condition codes based on rdx & rax
- Less common

Neither save their result, just set condition codes!

UNIVERSITYsf VIRGINIA

Example: Loops

while (i < 10)
i+=1

UNIVERSITYsf VIRGINIA

Example: Functions

f(x,y):

return 4

2= £(2.5)

UNIVERSITYsf VIRGINIA

Function Calls: Calling Conventions

callg myfun
- Push return address, then jump to myfun
- Convention: Store arguments in registers and stack before call

- First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
- If more arguments, pushed onto stack (last to first)

retq
- Pop return address from stack and jump back
- Convention: store return value in rax before calling retq

This is similar to our Toy ISA’s function calls in homeworR 4

UNIVERSITYsf VIRGINIA

Calling Conventions: Registers

Calling conventions - recommendations for making function calls

- Where to put arguments/parameters for the function call?
- Where to put return value? in rax before calling retq
- What happens to values in the registers?

— Callee-save - The function should ensure the values in
these registers are unchanged when the function returns

* rbx, rsp, rbp, r12, r13, r14 ri1b

— Caller-save - Before making a function call, save the value,
since the function may change it

UNIVERSITYsf VIRGINIA

Most Common Instructions

ek =

- lea - load effective address

- call - push PC and jump to address
* add - +=

- cmp - Set flags as if performing subtract
* jmp - unconditional jump

- test - set flags as If performing &

- je - jJump Iff flags indicate == 0

- pop - pop value from stack

- push - push value onto stack

- ret - pop PC from the stack

UNIVERSITYsf VIRGINIA

Debugger

Debugger - step through code!
» You will be using this for lab 7
- Experience seeing results of these instructions step-by-step

- Please read the x86-64 summary reading before lab!

