UNIVERSITYsf VIRGINIA

Endianness

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.
Assistant Professor

il UNTERSITY | ENGINEERING

i UNIVERSITYof VIRGINIA

Announcements

* Homework 4 due tonight at 11:59pm on Gradescope
— Note the earlier deadline!
— You have written most of this code already
— Lab 6 may provide a fast way to get started

* No quiz this weekend!

UNIVERSITYsf VIRGINIA

64-bit Machines

How much can we address with 64-bits?

« 16 EiB (2% addresses = 24 x 200)

* ButI only have 8 GiB of RAM

UNIVERSITYsf VIRGINIA

A Challenge

There 1s a disconnect:

* Registers: 64-bits values

« Memory: 8-bit values (i.e., 1 byte values) Mot we are Sﬁ?Wg s Sl iy) 7%77;5
(| kyte)

— Each address addresses an 8-bit value in memory

— Each address points to a 1-byte slot in memory

il UNIVERSITYo VIRGINIA

A Challenge

There 1s a disconnect:

* Registers: 64-bits values

 Memory: 8-bit values (i.e., 1 byte values)
— Each address addresses an 8-bit value in memory
— Each address points to a 1-byte slot in memory

* How do we store a 64-bit value in an 8-bit spot?

UNIVERSITYsf VIRGINIA

A B)C D’}BF (4 byfos)

Rules Ox |09
|

!

Rules to break “big values” into bytes (memory)
1. Break it into bytes o A
’ : Okfoo Ombol Oxbn Urshod
2. Store them adjacently ctorfiy Fam on
3. Address of the overall value = smallest address of its bytes oddiece ond gorg W
4. Order the bytes .
» If parts are ordered (i.e., array), first goes in smallest address
* Else, hardware implementation gets to pick (!!)
— Little-endian
— Big-endian

UNIVERSITYsf VIRGINIA

Ordering Values x| 00 !/q 9/_(pleE
Little-endian EF D
— I s _Cb ., A8, 00,
* Store the low order part/byte first . Unbo 1 Orb2 002

* Most hardware today is little-endian

Big-endian ——
00, A8, CD

: ’ 5) B
» Store the high order part/byte first T

Osboo Oxlol Db Dnbod
Why we want to talk obout 2 wows”

Boanice pzaple decded o clo obffaent Tmgs
0 wyits 00ABCDEE, but we @ladate tom F 4o 0,

Page 39

Moo tods He raason o e EF st

UNIVERSITYsf VIRGINIA

Example

aroy of 2 numbers, each ninber shebl use 2 bytes
Store [0x1234, 0x5678] at address 0xFO0O0

owlolress little enolion g endion
Omz%{ U EQ0 3% |2
(x FO| [2 24
kohEl Dx o2 ¢ &)
| Orfo3 | 5h 5

UNIVERSITYsf VIRGINIA

Endianness

Why do we study endianness? [795P{g o(io(n”ﬂ e He some %W\Q

* TItis everywhere Tnfoch, your computers ove. proloably
* Itis a source of weird bugs O/OW oifferent Jg}ny\\a]g NOW.

* Ex: It’s likely your computer uses:

— Little-endian from CPU to memory

— Big-endian from CPU to network

— File formats are roughly half and half

UNIVERSITYsf VIRGINIA

Moving up!

il UNIVERSITYo VIRGINIA

Assembly
o - TCA s hke ﬁ]@gmmmm and.
General principle of all assembly languages " bl oy 070 M{]W{(EZ
* Code (text, not binary!) . Legenb b o Jo < o Sontence
* 1 line of code = 1 machine instruction witten a0 Hhod guoge.

* One-to-one reversible mapping between binary and assembly
— We do not need to remember binary encodings!

— A program will turn text to binary for us!

il UNIVERSITYo VIRGINIA

Assembly

Features of assembly

Automatic addresses - use labels to keep track of addresses

— Assembler will reme ' se where appr 1ate
— La(bels Wl}m&lo X%St in machine code 5 gﬁoﬁ? ao{;?fégi hen ’{Jf bm S
Metadata - data about data a%out data (erto o) Hl;f@ @iw / ot were gy o 0,

— Data that helps turn assembly into code the machine can use

As complicated as machine instructions

— There are a lot of instructions, and it is one-to-one!

Page 12

UNIVERSITYsf VIRGINIA

Assembly Languages

Foch QU family has 15 own unique
There are many assembly languages ot o achine. rstucions — thorre

* But, they’re backed by hardware! ¢ o/ psembly loagage.
« Two big ones these days: x86-64 and ARM i chps o MAC
, st W\% . 6@“}7}10\/16?8
— You likely have machines that use one of these
e Others: RISC-V, MIPS, fuat’

We will focus on x86-64

il UNIVERSITYo VIRGINIA

x86-64

x86-64 has a weird and long history
* Expansion of the 8086 series (Intel)
§ b (b bits 32 bits
awg — 8086, 8286, 8386, 8486, x86
okl cnphii

e AMD expanded it with AMD64 A bt bty i U with <.

e Intel decide to use same build, but called it x86-64

* (Backwards compatible with the 8086 series

UNIVERSITYsf VIRGINIA

x86-64

Two dialects - two ways to write the same thing
* Intel - likely using with Windows
mov QWORD PTR [rdx+0x227],rax
* AT&T - likely using with anything else
movq %rax,0x227(%rdx)
We will use AT&T dialect

UNIVERSITYsf VIRGINIA

AT&T x86-84 Assembly

instruction source, destination

- Instruction followed by 0 or more operands (arguments)

. : ol we will nat see
4, types of operands: (fypicolly ot 2>
- Number (immediate value):($0x123
- Register:(%rax

- Address of memory: (%rax) or 24 or labelname
lood g

%\Q (10\6“ 0%

Value at an address|in memory: (%rax) or 24 or labelname
Iammiofﬁh wses , e are dmg &me@31MWg
fd\é\/{)\(me Frce T%Y

s

UNIVERSITYsf VIRGINIA

AT&T x86-84 Assembly

mylabelnamel) gnl yith o colon
- Label - remember the address of next thing to use later

@something something <l yAth o clot
+ Metadirective - extra information that is not code
- How the code works with other things (i.e., talk to OS)
- EX: .globl main

@We can have comments!

UNIVERSITYsf VIRGINIA

Addressing Memory
ol C /" ek
2130(%rax, %rsp, 8) %
- Address can have up to 4 parts: 2 numbers, 2 registers [T

- Combines as:\2130 + %rax + (%rsp * 8)
- Common usage from this example:
- rax - address of an object in memo

- 2130 - offset of an array into the object

- rsp - index into t
- 8 - size of the values in the array (yed o alelode, the offeet ?

on't . (Y%rax) or (hrax, 4) or 4(%rax) I 1 doit foe all the

- This is alllone operand (one memory address) piees, i will - colaulate
whed 1t @n.

UNIVERSITYsf VIRGINIA

hello.s example

UNIVERSITYsf VIRGINIA

Registers

rax is a 64-bit register Cmppwge&(0o be b?\cfQWaW)(s Wwﬁb[& With #8h (52-b7%), [bbit,

vOF (i bits) eop (22 bits) Lt -bit)

| (|
ah ol (§bits fr eoh)
T0 1 lokot 32-bit verdon, # will Just 2 ot te fop 32 bits.
W'l see His with all ow registers, n shghtly different uay.

Cthedk the Terdn9))

UNIVERSITYsf VIRGINIA

Instructions (oyt ACroNYs Ny it we wont 10 do ke mov gdd, and, or | xor, =,

Instructions have different versions depending on number of bits
to use

* movq - 64-bit move (Qﬁ/mlo\k 1%\/ MU{@ ,ﬂ,{bq])

ca-auadword o ctnection Pllosed by fes wide
* movl - 32-bit move of tho 409 WL WAL 0 dlo.
-1 =long

- There are encodings for shorter things, but we will mostly see
32- and 64-bit

UNIVERSITYsf VIRGINIA

More powerful than our ISA

Instructions can move/operate between memory and register
* movq %rax, %rcx - register to register

- Remember our icode 0

- movq (%rax), %rcx - memory to register
- Remember our icode 3

- movq %rax, (%rcex) - register to memory
- Remember our icode 4

- movq $21, %rax - Immediate to register

- Remember our icode 6 (b=0) We amat do memory o
Note: at most one memory address per instruction nemon calculadioms

Page 22

UNIVERSITYsf VIRGINIA

Other Instructions

Other instructions work the same way
- addq hrax, %Arcx — ICX += rax
- subq (%rbx), %rax — rax -= M[rbx]
- xor, and, and others work the same way!
- Assembly has virtually no 3-argument instructions

- All will be modifying something (i.e., +=, &=, ...)

UNIVERSITYsf VIRGINIA

Jumps

jmp foo
- Unconditional jump to foo
- foo IS a label or memory address
- Need jmp* to use register value
Conditional jumps

*Jl, Jjle, je, Jjme, Jg Jge, Ja Jb, Js, Jo

Unlike our Toy ISA, these do not compare given register to 0

UNIVERSITYsf VIRGINIA

Jumps

Condition codes - 4 1-bit registers set by every math operation,
cmp, and test

- Result for the operation compared to 0 (if no overflow)

- Example:
addq $-5, Yrax
// ...code that doesn't set condition codes...

je foo

- Sets condition codes from doing math (subtract 5 from rax)

- Tells whether result was positive, negative, 0, if there was
overflow, ...
- Then jump If the result of operation should have been =0

UNIVERSITYsf VIRGINIA

Jumps: compare...

cmpq Arax, %rdx
- Compare checks result of == and sets condition codes
- How rdx - rax compares with 0
- Be aware of ordering!

- If rax IS bigger, sets < flag
- if rdx Is bigger, sets > flag

UNIVERSITYsf VIRGINIA

Jumps: ... and test

testq %rax, ’%rdx
- Sets the condition codes based on rdx & rax
- Less common

Neither save their result, just set condition codes!

UNIVERSITYsf VIRGINIA

Function Calls: Calling Conventions

callg myfun
- Push return address, then jump to myfun
- Convention: Store arguments in registers and stack before call

- First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
- If more arguments, pushed onto stack (last to first)

retq
- Pop return address from stack and jump back
- Convention: store return value in rax before calling retq

This is similar to our Toy ISA’s function calls in homeworR 4

UNIVERSITYsf VIRGINIA

Debugger

Debugger - step through code!
» You will be using this for lab 7
- Experience seeing results of these instructions step-by-step

- Please read the x86-64 summary reading before lab!

