UNIVERSITYsf VIRGINIA

Endianness

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.
Assistant Professor

il UNTERSITY | ENGINEERING

i UNIVERSITYof VIRGINIA

Announcements

* Homework 4 due tonight at 11:59pm on Gradescope
— Note the earlier deadline!
— You have written most of this code already
— Lab 6 may provide a fast way to get started

* No quiz this weekend!

UNIVERSITYsf VIRGINIA

64-bit Machines

How much can we address with 64-bits?

« 16 EiB (2% addresses = 24 x 200)

* ButI only have 8 GiB of RAM

UNIVERSITYsf VIRGINIA

A Challenge

There 1s a disconnect:
* Registers: 64-bits values
 Memory: 8-bit values (i.e., 1 byte values)
— Each address addresses an 8-bit value in memory

— Each address points to a 1-byte slot in memory

il UNIVERSITYo VIRGINIA

A Challenge

There 1s a disconnect:

* Registers: 64-bits values

 Memory: 8-bit values (i.e., 1 byte values)
— Each address addresses an 8-bit value in memory
— Each address points to a 1-byte slot in memory

* How do we store a 64-bit value in an 8-bit spot?

il UNIVERSITYo VIRGINIA

Rules

Rules to break “big values” into bytes (memory)
1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes
» If parts are ordered (i.e., array), first goes in smallest address
* Else, hardware implementation gets to pick (!!)
— Little-endian
— Big-endian

UNIVERSITYsf VIRGINIA

Ordering Values

Little-endian

* Store the low order part/byte first

* Most hardware today is little-endian
Big-endian

» Store the high order part/byte first

UNIVERSITYsf VIRGINIA

Example

Store [0x1234, 0x5678] at address 0xFO0O0

UNIVERSITYsf VIRGINIA

Endianness

Why do we study endianness?
* Itis everywhere
* Itis a source of weird bugs

* Ex: It’s likely your computer uses:

— Little-endian from CPU to memory

— Big-endian from CPU to network

— File formats are roughly half and half

UNIVERSITYsf VIRGINIA

Moving up!

i UNIVERSITYof VIRGINIA

Assembly

General principle of all assembly languages

* Code (text, not binary!)

* 1 line of code = 1 machine instruction

* One-to-one reversible mapping between binary and assembly
— We do not need to remember binary encodings!

— A program will turn text to binary for us!

i UNIVERSITYf VIRGINIA

Assembly

Features of assembly

* Automatic addresses - use labels to keep track of addresses
— Assembler will remember location of labels and use where appropriate
— Labels will not exist in machine code

* Metadata - data about data
— Data that helps turn assembly into code the machine can use

* As complicated as machine instructions

— There are a lot of instructions, and it is one-to-one!

i UNIVERSITYof VIRGINIA

Assembly Languages

There are many assembly languages
* But, they’re backed by hardware!
* Two big ones these days: x86-64 and ARM
— You likely have machines that use one of these
e Others: RISC-V, MIPS, ...
We will focus on x86-64

il UNIVERSITYo VIRGINIA

x86-64

x86-64 has a weird and long history
* Expansion of the 8086 series (Intel)
— 8086, 8286, 8386, 8486, x86
 AMD expanded it with AMD64
e Intel decide to use same build, but called it x86-64

* Backwards compatible with the 8086 series

UNIVERSITYsf VIRGINIA

x86-64

Two dialects - two ways to write the same thing
* Intel - likely using with Windows
mov QWORD PTR [rdx+0x227],rax
* AT&T - likely using with anything else
movq %rax,0x227(%rdx)
We will use AT&T dialect

UNIVERSITYsf VIRGINIA

AT&T x86-84 Assembly

instruction source, destination
- Instruction followed by 0 or more operands (arguments)
- 4 types of operands:

- Number (immediate value): $0x123

- Register: %rax

- Address of memory: (%rax) or 24 or labelname

- Value at an address in memory: (%rax) Or 24 or labelname

UNIVERSITYsf VIRGINIA

AT&T x86-84 Assembly

mylabelname:

- Label - remember the address of next thing to use later
.something something

+ Metadirective - extra information that is not code

- How the code works with other things (i.e., talk to OS)

- EX: .globl main

// we can have comments!

UNIVERSITYsf VIRGINIA

Addressing Memory

2130(%rax, %rsp, 8)
- Address can have up to 4 parts: 2 numbers, 2 registers
- Combines as: 2130 + %rax + (%rsp * 8)
- Common usage from this example:

- rax - address of an object in memory
- 2130 - offset of an array into the object
- rsp - index into the array

- 8 - size of the values in the array

- Don’t need all parts: (%rax) or (%rax, 4) or 4(Y%rax)

- This is all one operand (one memory address)

UNIVERSITYsf VIRGINIA

hello.s example

UNIVERSITYsf VIRGINIA

Registers

rax is a 64-bit register

UNIVERSITYsf VIRGINIA

Instructions

Instructions have different versions depending on number of bits
to use

* movq - 64-bit move
- q = quad word

- movl - 32-bit move
-1=1long

- There are encodings for shorter things, but we will mostly see
32- and 64-bit

UNIVERSITYsf VIRGINIA

More powerful than our ISA

Instructions can move/operate between memory and register
* movq %rax, %rcx - register to register

- Remember our icode 0

- movq (%rax), %rcx - memory to register
- Remember our icode 3

- movq %rax, (%rcex) - register to memory
- Remember our icode 4

- movq $21, %rax - Immediate to register

- Remember our icode 6 (b=0)
Note: at most one memory address per instruction

Page 22

UNIVERSITYsf VIRGINIA

Other Instructions

Other instructions work the same way
- addq hrax, %Arcx — ICX += rax
- subq (%rbx), %rax — rax -= M[rbx]
- xor, and, and others work the same way!
- Assembly has virtually no 3-argument instructions

- All will be modifying something (i.e., +=, &=, ...)

UNIVERSITYsf VIRGINIA

Jumps

jmp foo
- Unconditional jump to foo
- foo IS a label or memory address
- Need jmp* to use register value
Conditional jumps

*Jl, Jjle, je, Jjme, Jg Jge, Ja Jb, Js, Jo

Unlike our Toy ISA, these do not compare given register to 0

UNIVERSITYsf VIRGINIA

Jumps

Condition codes - 4 1-bit registers set by every math operation,
cmp, and test

- Result for the operation compared to 0 (if no overflow)

- Example:
addq $-5, Yrax
// ...code that doesn't set condition codes...

je foo

- Sets condition codes from doing math (subtract 5 from rax)

- Tells whether result was positive, negative, 0, if there was
overflow, ...
- Then jump If the result of operation should have been =0

UNIVERSITYsf VIRGINIA

Jumps: compare...

cmpq Arax, %rdx
- Compare checks result of == and sets condition codes
- How rdx - rax compares with 0
- Be aware of ordering!

- If rax IS bigger, sets < flag
- if rdx Is bigger, sets > flag

UNIVERSITYsf VIRGINIA

Jumps: ... and test

testq %rax, ’%rdx
- Sets the condition codes based on rdx & rax
- Less common

Neither save their result, just set condition codes!

UNIVERSITYsf VIRGINIA

Function Calls: Calling Conventions

callg myfun
- Push return address, then jump to myfun
- Convention: Store arguments in registers and stack before call

- First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
- If more arguments, pushed onto stack (last to first)

retq
- Pop return address from stack and jump back
- Convention: store return value in rax before calling retq

This is similar to our Toy ISA’s function calls in homeworR 4

UNIVERSITYsf VIRGINIA

Debugger

Debugger - step through code!
» You will be using this for lab 7
- Experience seeing results of these instructions step-by-step

- Please read the x86-64 summary reading before lab!

