
Page 1

CS 2130: Computer Systems and Organization 1
Xinyao Yi Ph.D.
Assistant Professor

Endianness

Page 2

Announcements

• Homework 4 due tonight at 11:59pm on Gradescope

– Note the earlier deadline!

– You have written most of this code already

– Lab 6 may provide a fast way to get started

• No quiz this weekend!

Page 3

64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)

• But I only have 8 GiB of RAM

Page 4

A Challenge

There is a disconnect:

• Registers: 64-bits values

• Memory: 8-bit values (i.e., 1 byte values)

– Each address addresses an 8-bit value in memory

– Each address points to a 1-byte slot in memory

Page 5

A Challenge

There is a disconnect:

• Registers: 64-bits values

• Memory: 8-bit values (i.e., 1 byte values)

– Each address addresses an 8-bit value in memory

– Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

Page 6

Rules

Rules to break “big values” into bytes (memory)
1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes
• If parts are ordered (i.e., array), first goes in smallest address
• Else, hardware implementation gets to pick (!!)

– Little-endian
– Big-endian

Page 7

Ordering Values

Little-endian

• Store the low order part/byte first

• Most hardware today is little-endian

Big-endian

• Store the high order part/byte first

Page 8

Example

Store [0x1234, 0x5678] at address 0xF00

Page 9

Endianness

Why do we study endianness?

• It is everywhere

• It is a source of weird bugs

• Ex: It’s likely your computer uses:

– Little-endian from CPU to memory

– Big-endian from CPU to network

– File formats are roughly half and half

Page 10

Moving up!

Page 11

Assembly

General principle of all assembly languages

• Code (text, not binary!)

• 1 line of code = 1 machine instruction

• One-to-one reversible mapping between binary and assembly

– We do not need to remember binary encodings!

– A program will turn text to binary for us!

Page 12

Assembly

Features of assembly
• Automatic addresses - use labels to keep track of addresses

– Assembler will remember location of labels and use where appropriate
– Labels will not exist in machine code

• Metadata - data about data
– Data that helps turn assembly into code the machine can use

• As complicated as machine instructions
– There are a lot of instructions, and it is one-to-one!

Page 13

Assembly Languages

There are many assembly languages

• But, they’re backed by hardware!

• Two big ones these days: x86-64 and ARM

– You likely have machines that use one of these

• Others: RISC-V, MIPS, ...

We will focus on x86-64

Page 14

x86-64

x86-64 has a weird and long history

• Expansion of the 8086 series (Intel)

– 8086, 8286, 8386, 8486, x86

• AMD expanded it with AMD64

• Intel decide to use same build, but called it x86-64

• Backwards compatible with the 8086 series

Page 15

x86-64

Two dialects - two ways to write the same thing

• Intel - likely using with Windows

mov QWORD PTR [rdx+0x227],rax

• AT&T - likely using with anything else

movq %rax,0x227(%rdx)

We will use AT&T dialect

Page 16

AT&T x86-84 Assembly

Page 17

AT&T x86-84 Assembly

Page 18

Addressing Memory

Page 19

hello.s example

Page 20

Registers

rax is a 64-bit register

Page 21

Instructions

Page 22

More powerful than our ISA

Page 23

Other Instructions

Page 24

Jumps

Page 25

Jumps

Page 26

Jumps: compare…

Page 27

Jumps: … and test

Page 28

Function Calls: Calling Conventions

Page 29

Debugger

