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Announcements

 Homework 4 due Friday at 11:59pm on Gradescope
— Note the earlier deadline!
— You have written most of this code already
— Lab 6 may provide a fast way to get started
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Backdoors

Backdoor: secret way in to do new unexpected things

* Get around the normal barriers of behavior

* Ex:away in to allow me to take complete control of your computer
Exploit - a way to use a vulnerability or backdoor that has been created
* Our exploit today: a malicious payload

— A passcode and program

— If it ever gets in memory, run my program regardless of what you want to do
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Our Hardware Backdoor
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Our Hardware Backdoor

Will you notice this on your chip?
* Modern chips have billions of transistors

* We’re talking adding a few hundred transistors

* Maybe with a microscope? But you’d need to know where to look!
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Our Hardware Backdoor

Have you heard about something like this before?
* Sounds like something from the movies
* People claim this might be happening

* To the best of my knowledge, no one has ever admitted to falling in

this trap
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Ethics, Business, Tech

Are there reasons to do this? Not to do this?

* No technical reason not to, it’s easy to do!
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Can we make a system where one bad actor can’t break 1t?
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Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!
* Ethical implications
* Business implications (lawsuits, PR, etc)
Can we make a system where one bad actor can’t break 1t?

* Code reviews, double checks, verification systems, automated

verification systems, ...
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Why does this work?
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Why?

Why does this work?
e It’s all bytes!

* Everything we store in computers are bytes

* We store code and data in the same place: memory
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It’s all bytes

Memory, Code, Data... It’s all bytes!
* Enumerate - pick the meaning for each possible byte

* Adjacency - store bigger values together (sequentially)

* Pointers - a value treated as address of thing we are interested in
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Enumerate

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?

Unsigned integer eighty-four

Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve

ASCI| capital letter T: T
Bitvector sets The set {2, 3,5}

Our example ISA Flip all bits of value in r1
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Adjacency

Adjacency - store bigger values together (sequentially)

* An array: build bigger values out of many copies of the same
type of small values
— Store them next to each other in memory

— Arithmetic to find any given value based on index
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Adjacency

Adjacency - store bigger values together (sequentially)
 Records, structures, classes

— Classes have fields! Store them adjacently

— Know how to access (add offsets from base address)

— If you tell me where object 1s, I can find fields
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Pointers

Pointers - a value treated as address of thing we are interested in
* A value that really points to another value

* Easy to describe, hard to use properly

* We’ll be talking about these a lot in this class!
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Pointers

Pointers - a value treated as address of thing we are interested in
* Give us strange new powers (represent more complicated things), e.g.,

— Variable-sized lists

— Values that we don’t know their type without looking

— Dictionaries, maps
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Programs Use These!

How do our programs use these?
 Enumerated icodes, numbers

* Ajacently stored instructions (PC+1)

* Pointers of where to jump/goto (addresses in memory)
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ToyISA Instructions

So far, only dealing with 8-bit machine!

icode b | meaning

0 rA = rB
1 rA &= rB
2 rA += rB
3 0| rA = ~rA
1| rA = IrA
2 | rA = -rA
3| rA = pc
4 rA = read from memory at address rB
5 write rA to memory at address rB
6 rA = read from memory at pc + 1

rA &= read from memory at pc + 1

rA += read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

wnNH—HO

7 Compare rA as 8-bit 2's-complement to 0
if rA <= 0 set pc = rB
else increment pc as normal
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64-bit Machines

64-bit machine: The registers are 64-bits
* 1.c., 10, butalso PC

Important to have large values. Why?
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64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?

* Most important: PC and memory addresses

* How much memory could our 8-bit machine access?
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64-bit Machines

64-bit machine: The registers are 64-bits
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* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes
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64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

* Late 70s - 16 bits: 65536 Bytes
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64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

* Late 70s - 16 bits: 65536 Bytes
* 80s - 32 bits:
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64-bit Machines
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* Most important: PC and memory addresses
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64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

* Late 70s - 16 bits: 65536 Bytes
* 80s - 32 bits: = 4 billion bytes

* Today’s processors - 64 bits:
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64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

* Late 70s - 16 bits: 65536 Bytes
* 80s - 32 bits: = 4 billion bytes

» Today’s processors - 64 bits: 2° addresses
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Aside: Powers of Two

Value base-10 Short form Pronounced
210 1694, Ki Kilo
P 1,048,576 Mi Mega
e 1,073,741,824 Gi Giga
a 1,099, 511,627,776 Ti Tera
230 1125,899,906,842,624 Pi Peta
200 1152.021,504,606,846,976 Ei Fxa

Example: 27 bytes
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Aside: Powers of Two

Value base-10 Short form Pronounced
20 1024 Ki Kilo
220 1,048,576 Mi Mega
DY 1,073,741,824, Gi Giga
i 1,099,511,627,776 Ti Tera
220 1125,899,906,842,624 Pi Peta
200 1152.921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 x 220 bytes




UNIVERSITYsf VIRGINIA

Aside: Powers of Two

Value base-10 Short form Pronounced
210 1024 Ki Kilo
920 1,048,576 Mi Mega
20 1.0/27.805 Gi Giga
3 1,099,511,627.776 Ti Tera
220 1,125,899,906,842,624 Pi Peta
200 1152 921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 x 2?0 bytes = 27 MiB = 128 MiB
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64-bit Machines

How much can we address with 64-bits?




UNIVERSITYsf VIRGINIA

64-bit Machines

How much can we address with 64-bits?

« 16 EiB (2% addresses = 24 x 200)
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64-bit Machines

How much can we address with 64-bits?

« 16 EiB (2% addresses = 24 x 200)

* ButI only have 8 GiB of RAM
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A Challenge

There 1s a disconnect:
* Registers: 64-bits values
 Memory: 8-bit values (i.e., 1 byte values)
— Each address addresses an 8-bit value in memory

— Each address points to a 1-byte slot in memory
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A Challenge

There 1s a disconnect:

* Registers: 64-bits values

 Memory: 8-bit values (i.e., 1 byte values)
— Each address addresses an 8-bit value in memory
— Each address points to a 1-byte slot in memory

* How do we store a 64-bit value in an 8-bit spot?
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Rules

Rules to break “big values” into bytes (memory)
1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes
» If parts are ordered (i.e., array), first goes in smallest address
* Else, hardware implementation gets to pick (!!)
— Little-endian
— Big-endian
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Ordering Values

Little-endian

* Store the low order part/byte first

* Most hardware today is little-endian
Big-endian

» Store the high order part/byte first
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Example

Store [0x1234, 0x5678] at address 0xFO0O0
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Endianness

Why do we study endianness?
* Itis everywhere
* Itis a source of weird bugs

* Ex: It’s likely your computer uses:

— Little-endian from CPU to memory

— Big-endian from CPU to network

— File formats are roughly half and half




