
Page 1

CS 2130: Computer Systems and Organization 1
Xinyao Yi Ph.D.
Assistant Professor

Backdoors, Endianness

Page 2

Announcements

• Homework 4 due Friday at 11:59pm on Gradescope
– Note the earlier deadline!
– You have written most of this code already
– Lab 6 may provide a fast way to get started

Page 3

Backdoor: secret way in to do new unexpected things

• Get around the normal barriers of behavior

• Ex: a way in to allow me to take complete control of your computer

Exploit - a way to use a vulnerability or backdoor that has been created

• Our exploit today: a malicious payload

– A passcode and program

– If it ever gets in memory, run my program regardless of what you want to do

Backdoors

Page 4

Our Hardware Backdoor

Page 5

Will you notice this on your chip?

• Modern chips have billions of transistors

• We’re talking adding a few hundred transistors

• Maybe with a microscope? But you’d need to know where to look!

Our Hardware Backdoor

Page 6

Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening

• To the best of my knowledge, no one has ever admitted to falling in

this trap

Our Hardware Backdoor

Page 7

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

Ethics, Business, Tech

Page 8

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications

• Business implications (lawsuits, PR, etc)

Ethics, Business, Tech

Page 9

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications

• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

Ethics, Business, Tech

Page 10

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications

• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated

verification systems, ...

Ethics, Business, Tech

Page 11

Why does this work?

Page 12

Why does this work?

• It’s all bytes!

• Everything we store in computers are bytes

• We store code and data in the same place: memory

Why?

Page 13

Memory, Code, Data... It’s all bytes!

• Enumerate - pick the meaning for each possible byte

• Adjacency - store bigger values together (sequentially)

• Pointers - a value treated as address of thing we are interested in

It’s all bytes

Page 14

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?

Enumerate

Page 15

Adjacency - store bigger values together (sequentially)

• An array: build bigger values out of many copies of the same

type of small values

– Store them next to each other in memory

– Arithmetic to find any given value based on index

Adjacency

Page 16

Adjacency - store bigger values together (sequentially)

• Records, structures, classes

– Classes have fields! Store them adjacently

– Know how to access (add offsets from base address)

– If you tell me where object is, I can find fields

Adjacency

Page 17

Pointers - a value treated as address of thing we are interested in

• A value that really points to another value

• Easy to describe, hard to use properly

• We’ll be talking about these a lot in this class!

Pointers

Page 18

Pointers - a value treated as address of thing we are interested in

• Give us strange new powers (represent more complicated things), e.g.,

– Variable-sized lists

– Values that we don’t know their type without looking

– Dictionaries, maps

Pointers

Page 19

How do our programs use these?

• Enumerated icodes, numbers

• Ajacently stored instructions (PC+1)

• Pointers of where to jump/goto (addresses in memory)

Programs Use These!

Page 20

ToyISA Instructions
So far, only dealing with 8-bit machine!

Page 21

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

64-bit Machines

Page 22

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses

• How much memory could our 8-bit machine access?

64-bit Machines

Page 23

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses

• How much memory could our 8-bit machine access? 256 Bytes

64-bit Machines

Page 24

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses

• How much memory could our 8-bit machine access? 256 Bytes

• Late 70s - 16 bits:

64-bit Machines

Page 25

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses

• How much memory could our 8-bit machine access? 256 Bytes

• Late 70s - 16 bits: 65536 Bytes

64-bit Machines

Page 26

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses

• How much memory could our 8-bit machine access? 256 Bytes

• Late 70s - 16 bits: 65536 Bytes

• 80s - 32 bits:

64-bit Machines

Page 27

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses

• How much memory could our 8-bit machine access? 256 Bytes

• Late 70s - 16 bits: 65536 Bytes

• 80s - 32 bits: ≈ 4 billion bytes

64-bit Machines

Page 28

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses

• How much memory could our 8-bit machine access? 256 Bytes

• Late 70s - 16 bits: 65536 Bytes

• 80s - 32 bits: ≈ 4 billion bytes

• Today’s processors - 64 bits:

64-bit Machines

Page 29

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses

• How much memory could our 8-bit machine access? 256 Bytes

• Late 70s - 16 bits: 65536 Bytes

• 80s - 32 bits: ≈ 4 billion bytes

• Today’s processors - 64 bits: 264 addresses

64-bit Machines

Page 30

Aside: Powers of Two

Page 31

Aside: Powers of Two

Page 32

Aside: Powers of Two

Page 33

64-bit Machines

How much can we address with 64-bits?

Page 34

64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)

Page 35

64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)

• But I only have 8 GiB of RAM

Page 36

A Challenge

There is a disconnect:

• Registers: 64-bits values

• Memory: 8-bit values (i.e., 1 byte values)

– Each address addresses an 8-bit value in memory

– Each address points to a 1-byte slot in memory

Page 37

A Challenge

There is a disconnect:

• Registers: 64-bits values

• Memory: 8-bit values (i.e., 1 byte values)

– Each address addresses an 8-bit value in memory

– Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

Page 38

Rules

Rules to break “big values” into bytes (memory)
1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes
• If parts are ordered (i.e., array), first goes in smallest address
• Else, hardware implementation gets to pick (!!)

– Little-endian
– Big-endian

Page 39

Ordering Values

Little-endian

• Store the low order part/byte first

• Most hardware today is little-endian

Big-endian

• Store the high order part/byte first

Page 40

Example

Store [0x1234, 0x5678] at address 0xF00

Page 41

Endianness

Why do we study endianness?

• It is everywhere

• It is a source of weird bugs

• Ex: It’s likely your computer uses:

– Little-endian from CPU to memory

– Big-endian from CPU to network

– File formats are roughly half and half

