UNIVERSITYsf VIRGINIA

Backdoors, Endianness

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.
Assistant Professor

il UNTERSITY | ENGINEERING




il UNIVERSITYo VIRGINIA

Announcements

 Homework 4 due Friday at 11:59pm on Gradescope
— Note the earlier deadline!
— You have written most of this code already
— Lab 6 may provide a fast way to get started




i UNIVERSITYf VIRGINIA

Backdoors

Backdoor: secret way in to do new unexpected things

* Get around the normal barriers of behavior

* Ex:away in to allow me to take complete control of your computer
Exploit - a way to use a vulnerability or backdoor that has been created
* Our exploit today: a malicious payload

— A passcode and program

— If it ever gets in memory, run my program regardless of what you want to do




UNIVERSITYsf VIRGINIA

Our Hardware Backdoor




il UNIVERSITYo VIRGINIA

Our Hardware Backdoor

Will you notice this on your chip?
* Modern chips have billions of transistors

* We’re talking adding a few hundred transistors

* Maybe with a microscope? But you’d need to know where to look!




i UNIVERSITYof VIRGINIA

Our Hardware Backdoor

Have you heard about something like this before?
* Sounds like something from the movies
* People claim this might be happening

* To the best of my knowledge, no one has ever admitted to falling in

this trap




UNIVERSITYsf VIRGINIA

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

* No technical reason not to, it’s easy to do!




UNIVERSITYsf VIRGINIA

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!

* Ethical implications

* Business implications (lawsuits, PR, etc)




il UNIVERSITYo VIRGINIA

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!
* Ethical implications
* Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break 1t?




il UNIVERSITYo VIRGINIA

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!
* Ethical implications
* Business implications (lawsuits, PR, etc)
Can we make a system where one bad actor can’t break 1t?

* Code reviews, double checks, verification systems, automated

verification systems, ...




UNIVERSITYsf VIRGINIA

Why does this work?




UNIVERSITYsf VIRGINIA

Why?

Why does this work?
e It’s all bytes!

* Everything we store in computers are bytes

* We store code and data in the same place: memory




il UNIVERSITYo VIRGINIA

It’s all bytes

Memory, Code, Data... It’s all bytes!
* Enumerate - pick the meaning for each possible byte

* Adjacency - store bigger values together (sequentially)

* Pointers - a value treated as address of thing we are interested in




i UNIVERSITYof VIRGINIA

Enumerate

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?

Unsigned integer eighty-four

Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve

ASCI| capital letter T: T
Bitvector sets The set {2, 3,5}

Our example ISA Flip all bits of value in r1




il UNIVERSITYo VIRGINIA

Adjacency

Adjacency - store bigger values together (sequentially)

* An array: build bigger values out of many copies of the same
type of small values
— Store them next to each other in memory

— Arithmetic to find any given value based on index




il UNIVERSITYo VIRGINIA

Adjacency

Adjacency - store bigger values together (sequentially)
 Records, structures, classes

— Classes have fields! Store them adjacently

— Know how to access (add offsets from base address)

— If you tell me where object 1s, I can find fields




UNIVERSITYsf VIRGINIA

Pointers

Pointers - a value treated as address of thing we are interested in
* A value that really points to another value

* Easy to describe, hard to use properly

* We’ll be talking about these a lot in this class!




il UNIVERSITYo VIRGINIA

Pointers

Pointers - a value treated as address of thing we are interested in
* Give us strange new powers (represent more complicated things), e.g.,

— Variable-sized lists

— Values that we don’t know their type without looking

— Dictionaries, maps




UNIVERSITYsf VIRGINIA

Programs Use These!

How do our programs use these?
 Enumerated icodes, numbers

* Ajacently stored instructions (PC+1)

* Pointers of where to jump/goto (addresses in memory)




UNIVERSITYsf VIRGINIA

ToyISA Instructions

So far, only dealing with 8-bit machine!

icode b | meaning

0 rA = rB
1 rA &= rB
2 rA += rB
3 0| rA = ~rA
1| rA = IrA
2 | rA = -rA
3| rA = pc
4 rA = read from memory at address rB
5 write rA to memory at address rB
6 rA = read from memory at pc + 1

rA &= read from memory at pc + 1

rA += read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

wnNH—HO

7 Compare rA as 8-bit 2's-complement to 0
if rA <= 0 set pc = rB
else increment pc as normal




UNIVERSITYsf VIRGINIA

64-bit Machines

64-bit machine: The registers are 64-bits
* 1.c., 10, butalso PC

Important to have large values. Why?




il UNIVERSITYo VIRGINIA

64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?

* Most important: PC and memory addresses

* How much memory could our 8-bit machine access?




UNIVERSITYsf VIRGINIA

64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?

* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes




il UNIVERSITYo VIRGINIA

64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

e Late 70s - 16 bits:




il UNIVERSITYo VIRGINIA

64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

* Late 70s - 16 bits: 65536 Bytes




il UNIVERSITYo VIRGINIA

64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

* Late 70s - 16 bits: 65536 Bytes
* 80s - 32 bits:




UNIVERSITYsf VIRGINIA

64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

* Late 70s - 16 bits: 65536 Bytes

e 80s - 32 bits: = 4 billion bytes




il UNIVERSITYo VIRGINIA

64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

* Late 70s - 16 bits: 65536 Bytes
* 80s - 32 bits: = 4 billion bytes

* Today’s processors - 64 bits:




UNIVERSITYsf VIRGINIA

64-bit Machines

64-bit machine: The registers are 64-bits
1., 10, butalso PC
Important to have large values. Why?
* Most important: PC and memory addresses

* How much memory could our 8-bit machine access? 256 Bytes

* Late 70s - 16 bits: 65536 Bytes
* 80s - 32 bits: = 4 billion bytes

» Today’s processors - 64 bits: 2° addresses




UNIVERSITYsf VIRGINIA

Aside: Powers of Two

Value base-10 Short form Pronounced
210 1694, Ki Kilo
P 1,048,576 Mi Mega
e 1,073,741,824 Gi Giga
a 1,099, 511,627,776 Ti Tera
230 1125,899,906,842,624 Pi Peta
200 1152.021,504,606,846,976 Ei Fxa

Example: 27 bytes




UNIVERSITYsf VIRGINIA

Aside: Powers of Two

Value base-10 Short form Pronounced
20 1024 Ki Kilo
220 1,048,576 Mi Mega
DY 1,073,741,824, Gi Giga
i 1,099,511,627,776 Ti Tera
220 1125,899,906,842,624 Pi Peta
200 1152.921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 x 220 bytes




UNIVERSITYsf VIRGINIA

Aside: Powers of Two

Value base-10 Short form Pronounced
210 1024 Ki Kilo
920 1,048,576 Mi Mega
20 1.0/27.805 Gi Giga
3 1,099,511,627.776 Ti Tera
220 1,125,899,906,842,624 Pi Peta
200 1152 921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 x 2?0 bytes = 27 MiB = 128 MiB




UNIVERSITYsf VIRGINIA

64-bit Machines

How much can we address with 64-bits?




UNIVERSITYsf VIRGINIA

64-bit Machines

How much can we address with 64-bits?

« 16 EiB (2% addresses = 24 x 200)




UNIVERSITYsf VIRGINIA

64-bit Machines

How much can we address with 64-bits?

« 16 EiB (2% addresses = 24 x 200)

* ButI only have 8 GiB of RAM




UNIVERSITYsf VIRGINIA

A Challenge

There 1s a disconnect:
* Registers: 64-bits values
 Memory: 8-bit values (i.e., 1 byte values)
— Each address addresses an 8-bit value in memory

— Each address points to a 1-byte slot in memory




il UNIVERSITYo VIRGINIA

A Challenge

There 1s a disconnect:

* Registers: 64-bits values

 Memory: 8-bit values (i.e., 1 byte values)
— Each address addresses an 8-bit value in memory
— Each address points to a 1-byte slot in memory

* How do we store a 64-bit value in an 8-bit spot?




il UNIVERSITYo VIRGINIA

Rules

Rules to break “big values” into bytes (memory)
1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes
» If parts are ordered (i.e., array), first goes in smallest address
* Else, hardware implementation gets to pick (!!)
— Little-endian
— Big-endian




UNIVERSITYsf VIRGINIA

Ordering Values

Little-endian

* Store the low order part/byte first

* Most hardware today is little-endian
Big-endian

» Store the high order part/byte first




UNIVERSITYsf VIRGINIA

Example

Store [0x1234, 0x5678] at address 0xFO0O0




UNIVERSITYsf VIRGINIA

Endianness

Why do we study endianness?
* Itis everywhere
* Itis a source of weird bugs

* Ex: It’s likely your computer uses:

— Little-endian from CPU to memory

— Big-endian from CPU to network

— File formats are roughly half and half




