
Page 1

CS 2130: Computer Systems and Organization 1
Xinyao Yi Ph.D.
Assistant Professor

Instruction Set Architectures, Stacks

Page 2

Announcements

• Homework 4 available today due Friday at 11:59pm on
Gradescope

– Note the earlier deadline!
– You have written most of this code already
– Lab 6 may provide a fast way to get started

Page 15

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer defining how the

CPU is controlled by software

• Conceptually, set of instructions that are possible and how they should be encoded

• Results in many different machines to implement same ISA

– Example: How many machines implement our example ISA?

• Common in how we design hardware

weredesignedanInstructiondtArchitecture-eroere-e_ee.IMandAMDSCPUbnthusmgx86-64ISA.sothegcanrunthes.ae
i

Page 16

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know (software)

• Hardware and Software engineers have freedom of design, if conforming to
ISA

• Can change the machine without breaking any programs

fs
htsofflexibilityandfreedomtobuildthmgsthatwuldbefas.tor.lik

hyperthreadmg.Idaitwrryaboutonthesotneside.fiustmakesurethecodecanbecompiledtoISA.Icanrunit.cn
hardwǎe

Page 17

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know (software)

CSO: covering many of the times we’ll need to think across this barrier
Wérein generalatthispontghgtostartstgingjustabovet.msbarrierandtothesofwares.de

,

Page 18

Instructions Set Architecture

Backwards compatibility
• Include flexibility to add additional instructions later

• Original instructions will still work

• Same program can be run on PC from 10+ years ago and new PC today

Most manufacturers choose an ISA and stick with it

• Notable Exception: Apple

tegthrngr
ereservedIcanaddmorethmgs.mg
newmachnestillcanruntheoldcode.li

dinstructionsstillthere-Mynwm-achneietmuchfa.to
r

,

OnemhfaherethathaseioughITheremgrebsomeissues.butthatisanolherstongfollowmgtobe.cn
bletomakethesechangesandstilcomeout.ched

Page 7

What about real ISAs?

CISCihtsof-nstnhnsomeveryspecicned.gl/86-b4:thousands
ofihnns.vgaplex.RIScfewermstmctions.ba

teachexecutesveryefficienthgeg.it?ISCV:4-7basicmstructio
ns.smdlanddean.extensimsigrowtohundredsofmstructims
.AM: 50-⼼ mstmctims

Page 8

Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need

• As is, lot of things that are painful to do

– This was on purpose! So we can see limitations of ISAs early

Page 9

Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need

• As is, lot of things that are painful to do

– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

Page 10

Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need

• As is, lot of things that are painful to do

– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

• Missing something important: Help to put variables in memory

Page 11

Storing Variables in Memory

So far... we/compiler chose location for variable

Consider the following example:
f(x):

a=x
if (x <= 0) return 0
else return f(x-1) + a

Recursion
• The formal study of a function that calls itself

f

四⽇冮

sumsupthenumbersbetweenoneandx.lwhikitcomputmghes.no
hnortheresultfrf.it

aduallycdlsitsdfinasmakrse.tn

Page 12

Storing Variables in Memory

f(x):
a=x
if (x <= 0) return 0
else return f(x-1) + a

Where do we store a?

f f

国国⼝
sǎeitmargister 120 ? N"

overridethissareittomemory7.NO?valueoWenedsmethmg
thatwillhelpustoaganizememorysothatwekeeptrack.tthesevariabks ,

Page 13

The Stack

Stack - a last-in-first-out (LIFO) data structure
• The solution for solving this problem

rsp - Special register - the stack pointer
• Points to a special location in memory
• Two operations most ISAs support:

– push - put a new value on the stack
– pop - return the top value off the stack

IEfstakofplatesntt-erti-TTTIT_ehavetheadh.ch
emdexinmemgofacertainpont) ,

Page 14

The Stack: Push and Pop

push r0
• Put a value onto the “top” of the stack
• rsp -= 1
• M[rsp] = r0

pop r2
• Read value from “top”, save to register
• r2 = M[rsp]
• rsp += 1

memg
chighordrnumbers

叩惑
删 红 雌⽹⽟

H mn

117啊 Then 17tumsto.mn?:i:i:iaggmmmgItSnotpartoftheregisterfk

stacknowl.rs/⺕ wgdown) ,

Page 15

The Stack: Push and Pop

push 1177

push (23) R

.然
"

艾
xip 侧 憖 另 箋 另 ⼀ -2

0

23 10 =23 23

push (2) ˇ - 3 0 - 3 121 = -3

push (3)

yipop (RD

Z = 1邓 (122)

Page 16

The Stack: Push and Pop

Page 17

Function Calls
funhll hhz

䶗闤䲾
☐↓

whataboutparameters7returnvahnr2.r3hareoperandsc.cn
11mg aoinsfrohasretumvdue

,

Page 18

A short aside…

Time to take over the world!

Page 19

Backdoor: secret way in to do new unexpected things

• Get around the normal barriers of behavior

• Ex: a way in to allow me to take complete control of your computer

Backdoors

cnfs-sdlowanatta.hr/devel-ertotakecompletecontnolofyour

system-oftnwithutyouknowmgit.operatmgsys.tn
hassecurigchecksipasswrdspermissims.frewalbtnallmeant.tocoholuhocandowhatsmeone-nstalbabadort.sneakpastthosepnotectinsandganarnw.hutgong

tghthemmdpoess ,

Page 20

Exploit - a way to use a vulnerability or backdoor that has been created

• Our exploit today: a malicious payload

– A passcode and program

– If it ever gets in memory, run my program regardless of what you want to

do

Backdoors

mgbeapngramiscr.pt?-backdoor:hiddenentranceexpht:
howyoufnditopenitanduseittogetmsn.de ,

Page 21

Our backdoor will have 2 components

• Passcode: need to recognize when we see the passcode

• Program: do something bad when I see the passcode

Our Hardware Backdoor

◦

Lrtdwuneedstoreagnizeitwhenitqpears.CL
ikesecretknockonador.ifyouhearthatpatte.myouknowsomeonepecialwant.sn(
> 0ncethehardwareregnizesthepassode.itexecutessomehiddenorharmfulbe.hu

vii.

Page 22

Our Hardware Backdoor

mdiciouspayload.mmg.de05121130115痴叫→ 加9in

Iwanttorunpasscofkddatafromlonenstrupnfthenext.at
meny 籤重

⼀点点图 /
⼀百个𨰻5ldntothemanmg@itihme.I

dothenormdthngswant.toǚǜǜǜǚǚpo 州 (但 0 &和 == (5) 1 4- 1&?= 2 1) 1specidcsindata-3DI-jchrneennnnennnrloooosooeo.ir
城赞的

sonethmgntiade4.lutheoriginalvalueunufaaoyunugnf20.mu
easmentoriunderspecidcondition.w.name

Page 23

Will you notice this on your chip?

Our Hardware Backdoor

Page 24

Will you notice this on your chip?

• Modern chips have billions of transistors

• We’re talking adding a few hundred transistors

Our Hardware Backdoor

Page 25

Will you notice this on your chip?

• Modern chips have billions of transistors

• We’re talking adding a few hundred transistors

• Maybe with a microscope? But you’d need to know where to look!

Our Hardware Backdoor

IfIhadamicroscopeandIknewexactlywkretohok.ITbablycanfndit.Or.maybe.Imveng.ve
nglucky.But-Mostexplatsaregongtobefoundafters.mebodytriestouset.hn

Page 26

Have you heard about something like this before?

Our Hardware Backdoor

Page 27

Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening

Our Hardware Backdoor

Page 28

Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening

• To the best of my knowledge, no one has ever admitted to falling in

this trap

Our Hardware Backdoor

Page 29

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

Ethics, Business, Tech

Page 30

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications

• Business implications (lawsuits, PR, etc)

Ethics, Business, Tech

Page 31

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications

• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

Ethics, Business, Tech

Page 32

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications

• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated

verification systems, ...

Ethics, Business, Tech

Page 33

Why does this work?

Page 34

Why does this work?

• It’s all bytes!

• Everything we store in computers are bytes

• We store code and data in the same place: memory

Why?

Page 35

Memory, Code, Data... It’s all bytes!

• Enumerate - pick the meaning for each possible byte

• Adjacency - store bigger values together (sequentially)

• Pointers - a value treated as address of thing we are interested in

It’s all bytes

Page 36

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?

Enumerate

Page 37

Adjacency - store bigger values together (sequentially)

• An array: build bigger values out of many copies of the same

type of small values

– Store them next to each other in memory

– Arithmetic to find any given value based on index

Adjacency

Page 38

Adjacency - store bigger values together (sequentially)

• Records, structures, classes

– Classes have fields! Store them adjacently

– Know how to access (add offsets from base address)

– If you tell me where object is, I can find fields

Adjacency

Page 39

Pointers - a value treated as address of thing we are interested in

• A value that really points to another value

• Easy to describe, hard to use properly

• We’ll be talking about these a lot in this class!

Pointers

Page 40

Pointers - a value treated as address of thing we are interested in

• Give us strange new powers (represent more complicated things), e.g.,

– Variable-sized lists

– Values that we don’t know their type without looking

– Dictionaries, maps

Pointers

Page 41

How do our programs use these?

• Enumerated icodes, numbers

• Ajacently stored instructions (PC+1)

• Pointers of where to jump/goto (addresses in memory)

Programs Use These!

