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Announcements

 Homework 4 available today due Friday at 11:59pm on
Gradescope
— Note the earlier deadline!
— You have written most of this code already
— Lab 6 may provide a fast way to get started
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Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer defining how the
CPU is controlled by software
* Conceptually, set of instructions that are possible and how they should be encoded
* Results in many different machines to implement same ISA
— Example: How many machines implement our example ISA?

* Common in how we design hardware
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Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

* Provides an abstraction layer between:
— Everything computer is really doing (hardware)
— What programmer using the computer needs to know (software)

* Hardware and Software engineers have freedom of design, if conforming to
ISA

* Can change the machine without breaking any programs
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Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

* Provides an abstraction layer between:

— Everything computer is really doing (hardware)
— What programmer using the computer needs to know (software)

CSO: covering many of the times we’ll need to think across this barrier
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Instructions Set Architecture

Backwards compatibility

* Include flexibility to add additional instructions later

* Original instructions will still work

* Same program can be run on PC from 10+ years ago and new PC today
Most manufacturers choose an ISA and stick with it

* Notable Exception: Apple
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What about real ISAs?
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Our Instructions Set Architecture

What about our ISA?

* Enough instructions to compute what we need

* Asis, lot of things that are painful to do

— This was on purpose! So we can see limitations of ISAs early
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Our Instructions Set Architecture

What about our ISA?
* Enough instructions to compute what we need
* Asis, lot of things that are painful to do
— This was on purpose! So we can see limitations of ISAs early

* Add any number of new instructions using the reserved bit (7)
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Our Instructions Set Architecture

What about our ISA?
* Enough instructions to compute what we need
* As s, lot of things that are painful to do
— This was on purpose! So we can see limitations of ISAs early
* Add any number of new instructions using the reserved bit (7)

* Missing something important: Help to put variables in memory
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Storing Variables in Memory

So far... we/compiler chose location for variable

Consider the following example:
f(x):
a=x
if (x<=0) return 0
else return f(x-1) + a

Recursion
* The formal study of a function that calls itself
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Storing Variables in Memory

f(x):
a=X
if (x<=0) return O
else return f(x-1) + a

Where do we store a?
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The Stack

Stack - a last-in-first-out (LIFO) data structure
* The solution for solving this problem

rsp - Special register - the stack pointer
* Points to a special location in memory
* Two operations most ISAs support:
— push - put a new value on the stack
— pop - return the top value off the stack
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The Stack: Push and Pop

push rO

e Put avalue onto the “top” of the stack
* rsp-=
e Mirsp] =r0

pop r2

 Read value from “top”, save to register
e r2=M]rsp]
* rsp+=1
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The Stack: Push and Pop
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The Stack: Push and Pop
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Function Calls
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A short aside...

Time to take over the world!
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Backdoors

Backdoor: secret way in to do new unexpected things

e Get around the normal barriers of behavior

* Ex:away in to allow me to take complete control of your computer
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Backdoors

Exploit - a way to use a vulnerability or backdoor that has been created
* Our exploit today: a malicious payload

— A passcode and program

— If 1t ever gets in memory, run my program regardless of what you want to

do
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Our Hardware Backdoor

Our backdoor will have 2 components

* Passcode: need to recognize when we see the passcode

* Program: do something bad when I see the passcode
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Our Hardware Backdoor
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Our Hardware Backdoor

Will you notice this on your chip?
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Our Hardware Backdoor

Will you notice this on your chip?

* Modern chips have billions of transistors

* We’re talking adding a few hundred transistors
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Our Hardware Backdoor

Will you notice this on your chip?
* Modern chips have billions of transistors

* We’re talking adding a few hundred transistors

* Maybe with a microscope? But you’d need to know where to look!
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Our Hardware Backdoor

Have you heard about something like this before?
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Our Hardware Backdoor

Have you heard about something like this before?

* Sounds like something from the movies

* People claim this might be happening
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Our Hardware Backdoor

Have you heard about something like this before?
* Sounds like something from the movies
* People claim this might be happening

* To the best of my knowledge, no one has ever admitted to falling in

this trap
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Ethics, Business, Tech

Are there reasons to do this? Not to do this?

* No technical reason not to, it’s easy to do!
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Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!

* Ethical implications

* Business implications (lawsuits, PR, etc)
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Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!
* Ethical implications
* Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break 1t?
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Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!
* Ethical implications
* Business implications (lawsuits, PR, etc)
Can we make a system where one bad actor can’t break 1t?

* Code reviews, double checks, verification systems, automated

verification systems, ...
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Why does this work?
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Why?

Why does this work?
e It’s all bytes!

* Everything we store in computers are bytes

* We store code and data in the same place: memory
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It’s all bytes

Memory, Code, Data... It’s all bytes!
* Enumerate - pick the meaning for each possible byte

* Adjacency - store bigger values together (sequentially)

* Pointers - a value treated as address of thing we are interested in
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Enumerate

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?

Unsigned integer eighty-four

Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve

ASCI| capital letter T: T
Bitvector sets The set {2, 3,5}

Our example ISA Flip all bits of value in r1
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Adjacency

Adjacency - store bigger values together (sequentially)

* An array: build bigger values out of many copies of the same
type of small values
— Store them next to each other in memory

— Arithmetic to find any given value based on index
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Adjacency

Adjacency - store bigger values together (sequentially)
 Records, structures, classes

— Classes have fields! Store them adjacently

— Know how to access (add offsets from base address)

— If you tell me where object 1s, I can find fields
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Pointers

Pointers - a value treated as address of thing we are interested in
* A value that really points to another value

* Easy to describe, hard to use properly

*  We’ll be talking about these a lot in this class!
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Pointers

Pointers - a value treated as address of thing we are interested in
* Give us strange new powers (represent more complicated things), e.g.,

— Variable-sized lists

— Values that we don’t know their type without looking

— Dictionaries, maps
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Programs Use These!

How do our programs use these?
 Enumerated icodes, numbers

* Ajacently stored instructions (PC+1)

* Pointers of where to jump/goto (addresses in memory)




