UNIVERSITYsf VIRGINIA

Instruction Set Architectures, Stacks

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.
Assistant Professor

il UNTERSITY | ENGINEERING




i UNIVERSITYof VIRGINIA

Announcements

 Homework 4 available today due Friday at 11:59pm on
Gradescope
— Note the earlier deadline!
— You have written most of this code already
— Lab 6 may provide a fast way to get started




il UNIVERSITYo VIRGINIA

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer defining how the
CPU is controlled by software
* Conceptually, set of instructions that are possible and how they should be encoded
* Results in many different machines to implement same ISA
— Example: How many machines implement our example ISA?

* Common in how we design hardware




i UNIVERSITYs VIRGINIA

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

* Provides an abstraction layer between:
— Everything computer is really doing (hardware)
— What programmer using the computer needs to know (software)

* Hardware and Software engineers have freedom of design, if conforming to
ISA

* Can change the machine without breaking any programs




i UNIVERSITYf VIRGINIA

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

* Provides an abstraction layer between:

— Everything computer is really doing (hardware)
— What programmer using the computer needs to know (software)

CSO: covering many of the times we’ll need to think across this barrier




il UNIVERSITYo VIRGINIA

Instructions Set Architecture

Backwards compatibility

* Include flexibility to add additional instructions later

* Original instructions will still work

* Same program can be run on PC from 10+ years ago and new PC today
Most manufacturers choose an ISA and stick with it

* Notable Exception: Apple




UNIVERSITYsf VIRGINIA

What about real ISAs?




i UNIVERSITYof VIRGINIA

Our Instructions Set Architecture

What about our ISA?

* Enough instructions to compute what we need

* Asis, lot of things that are painful to do

— This was on purpose! So we can see limitations of ISAs early




i UNIVERSITYof VIRGINIA

Our Instructions Set Architecture

What about our ISA?
* Enough instructions to compute what we need
* Asis, lot of things that are painful to do
— This was on purpose! So we can see limitations of ISAs early

* Add any number of new instructions using the reserved bit (7)




i UNIVERSITYf VIRGINIA

Our Instructions Set Architecture

What about our ISA?
* Enough instructions to compute what we need
* As s, lot of things that are painful to do
— This was on purpose! So we can see limitations of ISAs early
* Add any number of new instructions using the reserved bit (7)

* Missing something important: Help to put variables in memory




il UNIVERSITYo VIRGINIA

Storing Variables in Memory

So far... we/compiler chose location for variable

Consider the following example:
f(x):
a=x
if (x<=0) return 0
else return f(x-1) + a

Recursion
* The formal study of a function that calls itself




UNIVERSITYsf VIRGINIA

Storing Variables in Memory

f(x):
a=X
if (x<=0) return O
else return f(x-1) + a

Where do we store a?




il UNIVERSITYo VIRGINIA

The Stack

Stack - a last-in-first-out (LIFO) data structure
* The solution for solving this problem

rsp - Special register - the stack pointer
* Points to a special location in memory
* Two operations most ISAs support:
— push - put a new value on the stack
— pop - return the top value off the stack




UNIVERSITYsf VIRGINIA

The Stack: Push and Pop

push rO

e Put avalue onto the “top” of the stack
* rsp-=
e Mirsp] =r0

pop r2

 Read value from “top”, save to register
e r2=M]rsp]
* rsp+=1




UNIVERSITYsf VIRGINIA

The Stack: Push and Pop




UNIVERSITYsf VIRGINIA

The Stack: Push and Pop




UNIVERSITYsf VIRGINIA

Function Calls




UNIVERSITYsf VIRGINIA

A short aside...

Time to take over the world!




UNIVERSITYsf VIRGINIA

Backdoors

Backdoor: secret way in to do new unexpected things

e Get around the normal barriers of behavior

* Ex:away in to allow me to take complete control of your computer




i UNIVERSITYof VIRGINIA

Backdoors

Exploit - a way to use a vulnerability or backdoor that has been created
* Our exploit today: a malicious payload

— A passcode and program

— If 1t ever gets in memory, run my program regardless of what you want to

do




UNIVERSITYsf VIRGINIA

Our Hardware Backdoor

Our backdoor will have 2 components

* Passcode: need to recognize when we see the passcode

* Program: do something bad when I see the passcode




UNIVERSITYsf VIRGINIA

Our Hardware Backdoor




UNIVERSITYsf VIRGINIA

Our Hardware Backdoor

Will you notice this on your chip?




UNIVERSITYsf VIRGINIA

Our Hardware Backdoor

Will you notice this on your chip?

* Modern chips have billions of transistors

* We’re talking adding a few hundred transistors




il UNIVERSITYo VIRGINIA

Our Hardware Backdoor

Will you notice this on your chip?
* Modern chips have billions of transistors

* We’re talking adding a few hundred transistors

* Maybe with a microscope? But you’d need to know where to look!




UNIVERSITYsf VIRGINIA

Our Hardware Backdoor

Have you heard about something like this before?




UNIVERSITYsf VIRGINIA

Our Hardware Backdoor

Have you heard about something like this before?

* Sounds like something from the movies

* People claim this might be happening




i UNIVERSITYof VIRGINIA

Our Hardware Backdoor

Have you heard about something like this before?
* Sounds like something from the movies
* People claim this might be happening

* To the best of my knowledge, no one has ever admitted to falling in

this trap




UNIVERSITYsf VIRGINIA

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

* No technical reason not to, it’s easy to do!




UNIVERSITYsf VIRGINIA

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!

* Ethical implications

* Business implications (lawsuits, PR, etc)




il UNIVERSITYo VIRGINIA

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!
* Ethical implications
* Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break 1t?




il UNIVERSITYo VIRGINIA

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
* No technical reason not to, it’s easy to do!
* Ethical implications
* Business implications (lawsuits, PR, etc)
Can we make a system where one bad actor can’t break 1t?

* Code reviews, double checks, verification systems, automated

verification systems, ...




UNIVERSITYsf VIRGINIA

Why does this work?




UNIVERSITYsf VIRGINIA

Why?

Why does this work?
e It’s all bytes!

* Everything we store in computers are bytes

* We store code and data in the same place: memory




il UNIVERSITYo VIRGINIA

It’s all bytes

Memory, Code, Data... It’s all bytes!
* Enumerate - pick the meaning for each possible byte

* Adjacency - store bigger values together (sequentially)

* Pointers - a value treated as address of thing we are interested in




i UNIVERSITYof VIRGINIA

Enumerate

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?

Unsigned integer eighty-four

Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve

ASCI| capital letter T: T
Bitvector sets The set {2, 3,5}

Our example ISA Flip all bits of value in r1




il UNIVERSITYo VIRGINIA

Adjacency

Adjacency - store bigger values together (sequentially)

* An array: build bigger values out of many copies of the same
type of small values
— Store them next to each other in memory

— Arithmetic to find any given value based on index




il UNIVERSITYo VIRGINIA

Adjacency

Adjacency - store bigger values together (sequentially)
 Records, structures, classes

— Classes have fields! Store them adjacently

— Know how to access (add offsets from base address)

— If you tell me where object 1s, I can find fields




UNIVERSITYsf VIRGINIA

Pointers

Pointers - a value treated as address of thing we are interested in
* A value that really points to another value

* Easy to describe, hard to use properly

*  We’ll be talking about these a lot in this class!




il UNIVERSITYo VIRGINIA

Pointers

Pointers - a value treated as address of thing we are interested in
* Give us strange new powers (represent more complicated things), e.g.,

— Variable-sized lists

— Values that we don’t know their type without looking

— Dictionaries, maps




UNIVERSITYsf VIRGINIA

Programs Use These!

How do our programs use these?
 Enumerated icodes, numbers

* Ajacently stored instructions (PC+1)

* Pointers of where to jump/goto (addresses in memory)




