
Page 1

CS 2130: Computer Systems and Organization 1
Xinyao Yi Ph.D.
Assistant Professor

Instruction Set Architectures, Stacks

Page 2

Announcements

• Homework 4 available today due Friday at 11:59pm on
Gradescope

– Note the earlier deadline!
– You have written most of this code already
– Lab 6 may provide a fast way to get started

Page 3

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer defining how the

CPU is controlled by software

• Conceptually, set of instructions that are possible and how they should be encoded

• Results in many different machines to implement same ISA

– Example: How many machines implement our example ISA?

• Common in how we design hardware

Page 4

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know (software)

• Hardware and Software engineers have freedom of design, if conforming to
ISA

• Can change the machine without breaking any programs

Page 5

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know (software)

CSO: covering many of the times we’ll need to think across this barrier

Page 6

Instructions Set Architecture

Backwards compatibility
• Include flexibility to add additional instructions later

• Original instructions will still work

• Same program can be run on PC from 10+ years ago and new PC today

Most manufacturers choose an ISA and stick with it

• Notable Exception: Apple

Page 7

What about real ISAs?

Page 8

Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need

• As is, lot of things that are painful to do

– This was on purpose! So we can see limitations of ISAs early

Page 9

Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need

• As is, lot of things that are painful to do

– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

Page 10

Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need

• As is, lot of things that are painful to do

– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

• Missing something important: Help to put variables in memory

Page 11

Storing Variables in Memory

So far... we/compiler chose location for variable

Consider the following example:
f(x):

a=x
if (x <= 0) return 0
else return f(x-1) + a

Recursion
• The formal study of a function that calls itself

Page 12

Storing Variables in Memory

f(x):
a=x
if (x <= 0) return 0
else return f(x-1) + a

Where do we store a?

Page 13

The Stack

Stack - a last-in-first-out (LIFO) data structure
• The solution for solving this problem

rsp - Special register - the stack pointer
• Points to a special location in memory
• Two operations most ISAs support:

– push - put a new value on the stack
– pop - return the top value off the stack

Page 14

The Stack: Push and Pop

push r0
• Put a value onto the “top” of the stack
• rsp -= 1
• M[rsp] = r0

pop r2
• Read value from “top”, save to register
• r2 = M[rsp]
• rsp += 1

Page 15

The Stack: Push and Pop

Page 16

The Stack: Push and Pop

Page 17

Function Calls

Page 18

A short aside…

Time to take over the world!

Page 19

Backdoor: secret way in to do new unexpected things

• Get around the normal barriers of behavior

• Ex: a way in to allow me to take complete control of your computer

Backdoors

Page 20

Exploit - a way to use a vulnerability or backdoor that has been created

• Our exploit today: a malicious payload

– A passcode and program

– If it ever gets in memory, run my program regardless of what you want to

do

Backdoors

Page 21

Our backdoor will have 2 components

• Passcode: need to recognize when we see the passcode

• Program: do something bad when I see the passcode

Our Hardware Backdoor

Page 22

Our Hardware Backdoor

Page 23

Will you notice this on your chip?

Our Hardware Backdoor

Page 24

Will you notice this on your chip?

• Modern chips have billions of transistors

• We’re talking adding a few hundred transistors

Our Hardware Backdoor

Page 25

Will you notice this on your chip?

• Modern chips have billions of transistors

• We’re talking adding a few hundred transistors

• Maybe with a microscope? But you’d need to know where to look!

Our Hardware Backdoor

Page 26

Have you heard about something like this before?

Our Hardware Backdoor

Page 27

Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening

Our Hardware Backdoor

Page 28

Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening

• To the best of my knowledge, no one has ever admitted to falling in

this trap

Our Hardware Backdoor

Page 29

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

Ethics, Business, Tech

Page 30

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications

• Business implications (lawsuits, PR, etc)

Ethics, Business, Tech

Page 31

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications

• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

Ethics, Business, Tech

Page 32

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications

• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated

verification systems, ...

Ethics, Business, Tech

Page 33

Why does this work?

Page 34

Why does this work?

• It’s all bytes!

• Everything we store in computers are bytes

• We store code and data in the same place: memory

Why?

Page 35

Memory, Code, Data... It’s all bytes!

• Enumerate - pick the meaning for each possible byte

• Adjacency - store bigger values together (sequentially)

• Pointers - a value treated as address of thing we are interested in

It’s all bytes

Page 36

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?

Enumerate

Page 37

Adjacency - store bigger values together (sequentially)

• An array: build bigger values out of many copies of the same

type of small values

– Store them next to each other in memory

– Arithmetic to find any given value based on index

Adjacency

Page 38

Adjacency - store bigger values together (sequentially)

• Records, structures, classes

– Classes have fields! Store them adjacently

– Know how to access (add offsets from base address)

– If you tell me where object is, I can find fields

Adjacency

Page 39

Pointers - a value treated as address of thing we are interested in

• A value that really points to another value

• Easy to describe, hard to use properly

• We’ll be talking about these a lot in this class!

Pointers

Page 40

Pointers - a value treated as address of thing we are interested in

• Give us strange new powers (represent more complicated things), e.g.,

– Variable-sized lists

– Values that we don’t know their type without looking

– Dictionaries, maps

Pointers

Page 41

How do our programs use these?

• Enumerated icodes, numbers

• Ajacently stored instructions (PC+1)

• Pointers of where to jump/goto (addresses in memory)

Programs Use These!

