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CS 2130: Computer Systems and Organization 1 
Xinyao Yi Ph.D. 
Assistant Professor

Instruction Set Architectures, Stacks
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Announcements

• Homework 4 available today due Friday at 11:59pm on 
Gradescope 

– Note the earlier deadline!
– You have written most of this code already 
– Lab 6 may provide a fast way to get started 
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Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer defining how the 

CPU is controlled by software 

• Conceptually, set of instructions that are possible and how they should be encoded 

• Results in many different machines to implement same ISA

– Example: How many machines implement our example ISA? 

• Common in how we design hardware 
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Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer 
defining how the CPU is controlled by software 

• Provides an abstraction layer between:
– Everything computer is really doing (hardware) 
– What programmer using the computer needs to know (software) 

• Hardware and Software engineers have freedom of design, if conforming to 
ISA 

• Can change the machine without breaking any programs 
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Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer 
defining how the CPU is controlled by software 

• Provides an abstraction layer between:
– Everything computer is really doing (hardware) 
– What programmer using the computer needs to know (software) 

CSO: covering many of the times we’ll need to think across this barrier 
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Instructions Set Architecture

Backwards compatibility 
• Include flexibility to add additional instructions later 

• Original instructions will still work 

• Same program can be run on PC from 10+ years ago and new PC today 

Most manufacturers choose an ISA and stick with it 

• Notable Exception: Apple 
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What about real ISAs?
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Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need 

• As is, lot of things that are painful to do 

– This was on purpose! So we can see limitations of ISAs early 
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What about our ISA?

• Enough instructions to compute what we need 

• As is, lot of things that are painful to do 
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• Add any number of new instructions using the reserved bit (7)  
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Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need 

• As is, lot of things that are painful to do 

– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)  

• Missing something important: Help to put variables in memory 
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Storing Variables in Memory 

So far... we/compiler chose location for variable 

Consider the following example: 
f(x): 

a=x 
if (x <= 0) return 0 
else return f(x-1) + a 

Recursion
• The formal study of a function that calls itself 
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Storing Variables in Memory 

f(x): 
a=x 
if (x <= 0) return 0 
else return f(x-1) + a 

Where do we store a? 
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The Stack  

Stack - a last-in-first-out (LIFO) data structure 
• The solution for solving this problem

rsp - Special register - the stack pointer 
• Points to a special location in memory 
• Two operations most ISAs support: 

– push - put a new value on the stack
– pop - return the top value off the stack 
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The Stack: Push and Pop  

push r0 
• Put a value onto the “top” of the stack 
• rsp -= 1
• M[rsp] = r0
 

pop r2 
• Read value from “top”, save to register
• r2 = M[rsp]
• rsp += 1 
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The Stack: Push and Pop  
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The Stack: Push and Pop  
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Function Calls
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A short aside…

Time to take over the world! 
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Backdoor: secret way in to do new unexpected things 

• Get around the normal barriers of behavior 

• Ex: a way in to allow me to take complete control of your computer 

Backdoors
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Exploit - a way to use a vulnerability or backdoor that has been created 

• Our exploit today: a malicious payload 

– A passcode and program 

– If it ever gets in memory, run my program regardless of what you want to 

do 

Backdoors
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Our backdoor will have 2 components

• Passcode: need to recognize when we see the passcode 

• Program: do something bad when I see the passcode 

Our Hardware Backdoor
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Our Hardware Backdoor
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Will you notice this on your chip? 

Our Hardware Backdoor
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Will you notice this on your chip?

• Modern chips have billions of transistors 

• We’re talking adding a few hundred transistors  

Our Hardware Backdoor
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Will you notice this on your chip?

• Modern chips have billions of transistors 

• We’re talking adding a few hundred transistors

• Maybe with a microscope? But you’d need to know where to look!   

Our Hardware Backdoor



Page 26

Have you heard about something like this before? 

Our Hardware Backdoor
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Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening

Our Hardware Backdoor
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Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening

• To the best of my knowledge, no one has ever admitted to falling in 

this trap

Our Hardware Backdoor
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Are there reasons to do this? Not to do this? 

• No technical reason not to, it’s easy to do! 

Ethics, Business, Tech 
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Are there reasons to do this? Not to do this? 

• No technical reason not to, it’s easy to do! 

• Ethical implications 

• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it? 

Ethics, Business, Tech 
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Are there reasons to do this? Not to do this? 

• No technical reason not to, it’s easy to do! 

• Ethical implications 

• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it? 

• Code reviews, double checks, verification systems, automated 

verification systems, ... 

Ethics, Business, Tech 
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Why does this work? 
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Why does this work? 

• It’s all bytes!

• Everything we store in computers are bytes

• We store code and data in the same place: memory 

Why?
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Memory, Code, Data... It’s all bytes! 

• Enumerate - pick the meaning for each possible byte 

• Adjacency - store bigger values together (sequentially) 

• Pointers - a value treated as address of thing we are interested in 

It’s all bytes 
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Enumerate - pick the meaning for each possible byte 

What is 8-bit 0x54? 

Enumerate  
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Adjacency - store bigger values together (sequentially)

• An array: build bigger values out of many copies of the same 

type of small values

– Store them next to each other in memory 

– Arithmetic to find any given value based on index 

Adjacency  
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Adjacency - store bigger values together (sequentially)

• Records, structures, classes 

– Classes have fields! Store them adjacently

– Know how to access (add offsets from base address) 

– If you tell me where object is, I can find fields 

Adjacency  
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Pointers - a value treated as address of thing we are interested in 

• A value that really points to another value

• Easy to describe, hard to use properly

• We’ll be talking about these a lot in this class! 

Pointers   
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Pointers - a value treated as address of thing we are interested in 

• Give us strange new powers (represent more complicated things), e.g., 

– Variable-sized lists

– Values that we don’t know their type without looking 

– Dictionaries, maps 

Pointers   
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How do our programs use these?

• Enumerated icodes, numbers

• Ajacently stored instructions (PC+1)

• Pointers of where to jump/goto (addresses in memory) 

Programs Use These!    


